Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 10: 1019211, 2023.
Article in English | MEDLINE | ID: mdl-36937359

ABSTRACT

Flavour is an important component that impacts the quality and acceptability of new functional foods. However, most flavour substances are low molecular mass volatile compounds, and direct handling and control during processing and storage are made difficult due to susceptibility to evaporation, and poor stability in the presence of air, light, moisture and heat. Encapsulation in the form of micro and nano technology has been used to address this challenge, thereby promoting easier handling during processing and storage. Improved stability is achieved by trapping the active or core flavour substances in matrices that are referred to as wall or carrier materials. The latter serve as physical barriers that protect the flavour substances, and the interactions between carrier materials and flavour substances has been the focus of many studies. Moreover, recent evidence also suggests that enhanced bioavailability of flavour substances and their targeted delivery can be achieved by nanoencapsulation compared to microencapsulation due to smaller particle or droplet sizes. The objective of this paper is to review several relevant aspects of physical-mechanical and physicochemical techniques employed to stabilize flavour substances by encapsulation. A comparative analysis of the physiochemical characterization of encapsulates (particle size, surface morphology and rheology) and the main factors that impact the stability of encapsulated flavour substances will also be presented. Food applications as well as opportunities for future research are also highlighted.

2.
J Food Biochem ; 46(7): e14127, 2022 07.
Article in English | MEDLINE | ID: mdl-35312074

ABSTRACT

Protein-energy malnutrition is a global challenge that demands urgent attention, especially with the increasing population growth and unmatched food security plans. One strategy is to expand the list of protein sources, such as neglected and underutilized crops, with high protein content. A good number of plant proteins, in addition to their nutritional benefits, exert therapeutic properties as seen in seeds derived from legumes and emerging sources such as hemp. In this review, the transepithelial transport, functional, and biological properties of hempseed proteins (HSPs) and peptides were discussed. The review also described the potential safety issues of incorporating hempseeds in food products. Due to the multitargeted effects of hempseed-derived proteins and their peptides against many chronic diseases, and their functional properties, current knowledge shows that hempseed has tremendous potential for functional food and nutraceutical applications. PRACTICAL APPLICATIONS: The alarming rate of malnutrition and the attendant health consequences demand that underexploited nutrient-rich crops should be incorporated as part of our common dietary sources. Among these crops, hempseed is gaining attention as an emerging source of proteins and peptides with promising potential in prevention and management of chronic diseases such as diabetes, hypertension, cancer, hypercholesterolemia, obesity, and diseases whose etiology involves oxidative stress and inflammation. Fortunately, a growing body of research evidence is demonstrating that hempseed is a reservoir of proteins and peptides with nutraceutical potentials for curbing life-threatening diseases.


Subject(s)
Cannabis , Hypercholesterolemia , Cannabis/chemistry , Peptides/chemistry , Plant Proteins/chemistry , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...