Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38542158

ABSTRACT

Diabetes mellitus (DM) is the second leading cause of mortality globally. The increased concern for DM is due to the underlying complications accompanying hyperglycaemia, associated with oxidative stress and consequent inflammation. The investigation of safe and effective treatments for DM is necessary. In the present study, the cytotoxicity, phytochemical analysis, antioxidant capacity, anti-inflammatory, and antidiabetic effects in an aqueous extract of Garcinia livingstonei leaves were assessed. All tested extract concentrations showed no toxicity against C3A hepatocytes. Several phenolic compounds were identified using ultra-high performance liquid chromatography mass spectrometry (UHPLC-MS). The total polyphenol content was 100.9741 mg GAE/g, 16.7712 mg CE/g flavanols, and 2.3548 mg QE/g flavonols. The antioxidant capacity values were 253.4268 mg AAE/g, 192.232 mg TE/g, and 167.8724 mg TE/g for ferric reducing antioxidant power (FRAP), Trolox equivalent antioxidant capacity (TEAC), and 2,2-diphenyl-1-pycrylhydrazyl (DPPH), respectively. The plant extract significantly (p < 0.05) demonstrated anti-inflammatory and hypoglycaemic effects in a dose-dependent manner, with the α-glucosidase inhibition of the extract being higher (p < 0.05) than in the standard conventional drug (acarbose). The findings of this study revealed the potential of the constituents of G. livingstonei aqueous leaf extract in DM treatment. Further studies on the preparation and mechanisms of action of the plant in DM treatment are recommended.


Subject(s)
Diabetes Mellitus , Garcinia , Antioxidants/chemistry , Plant Extracts/chemistry , Polyphenols/analysis , Hypoglycemic Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Phytochemicals/chemistry
2.
Environ Geochem Health ; 45(5): 1289-1309, 2023 May.
Article in English | MEDLINE | ID: mdl-35933629

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a large group of diverse hazardous organic compounds that are relatively stable and widely distributed throughout the world's ecosystems due to various anthropogenic activities. They are generally less soluble in water and have a low vapour pressure, but dissolve easily in adipose tissues; and they bioaccumulate into high concentrations in aquatic animals, thereby exerting a variety of hazardous and lethal effects. Despite the plethora of research studies on these pollutants, only few bibliometric reviews on the subject have been documented in the literature. As a result, the present study aimed to assess the research growth on PAHs-related studies across different ecosystems. Science Citation Index-Expanded of Web of Science was explored to obtain the research studies that were conducted between 1991 and 2020, and RStudio was utilized for the data analysis. Annual productivity increased arithmetically over the years, with a 9.2% annual growth rate and a collaboration index of 2.52. Foremost among the trend topics in this field of study include soil, sediments, biodegradation, bioremediation, bioavailability, and source apportionment. China, USA, Spain, France and Germany were the five top-ranked countries in terms of publications and citations over the three decades investigated; however, Korea, Japan, United Kingdom, Germany, and Canada were ranked as the five leading countries in terms of collaboration per published article (MCP ratio). Therefore, efforts to strengthen international collaboration in this field of study especially among the less participating countries and continents are thus encouraged. The findings of this study are expected to provide future direction for the upcoming researchers in identifying the hot spots in this field of study as well as research leaders whom to seek collaboration in their future research plan.


Subject(s)
Environmental Pollutants , Polycyclic Aromatic Hydrocarbons , Animals , Polycyclic Aromatic Hydrocarbons/analysis , Ecosystem , Environmental Pollutants/analysis , Biodegradation, Environmental , Bibliometrics , Environmental Monitoring
3.
Inflammopharmacology ; 31(1): 231-240, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36436183

ABSTRACT

BACKGROUND: In this study, we summarized the preclinical investigations of the neuroprotective activities of Hibiscus sabdariffa (HSD) extract via its effect on memory function, neuroinflammation and oxidative damage in the central nervous system, which may help to guide future studies. METHODS: Preclinical studies that investigated the effect of HSD extract on memory impairment, neuroinflammation and oxidative stress-induced neuronal damage were searched systematically in PubMed, EBSCOhost (including MEDLINE, CINAHL, APA PsycInfo, etc.), Web of Science (WoS) and Scopus. Parameters and indexes included Morris water maze, passive avoidance test, acetylcholinesterase activity, interleukin 1 (IL-1), tumour necrosis factor-alpha (TNF-α), MAPK, malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS) and mitochondria membrane potential (MMP). RESULTS: A total of 285 documents were identified; however, only ten articles were included and used for meta-analysis. The meta-analytic outcome revealed that HSD did not show any significant effect on memory function, neuroinflammatory biomarkers (IL-1, MAPK) and oxidative stress (GSH, MDA, ROS and MMP) in neuronal cells and tissues. CONCLUSIONS: Individual study revealed that HSD showed improved memory function, attenuated neuroinflammation and prevented oxidative damage to neurons. However, a conflicting result was observed from the meta-analytic outcomes which showed that HSD has no significant effect on cognitive impairment, neuroinflammation and oxidative stress-induced neuronal damage. However the contradiction in this finding may be associated with small number of studies included. Hence, more studies on the memory-enhacing effects and anti-neuroinflammatory activity of HSD in preclinical and clinical model are required to validate its neuroprotective effect.


Subject(s)
Hibiscus , Porifera , Animals , Antioxidants/pharmacology , Hibiscus/metabolism , Reactive Oxygen Species , Acetylcholinesterase/metabolism , Neuroinflammatory Diseases , Oxidative Stress , Plant Extracts/pharmacology , Glutathione
4.
Molecules ; 27(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36558046

ABSTRACT

The present study investigated phenolic compounds, antioxidant, antidiabetic, and the anti-inflammatory potentials of methanolic and chloroform extracts of Eriocephalus africanus. The methanolic extract included, polyphenols (112 ± 2.81 mg gallic acid equivalent (GAE)/g), flavonols (76.12 ± 7.95 mg quercetin equivalents (QE)/g); antioxidant capacity (Ferric Reducing Antioxidant Power (FRAP) (752.64 ± 89.0 µmol of ascorbic acid equivalents (AAE) per g dry weight (µmol AAE/g), 2,2-dyphenyl-1-picrylhydrazyl (DPPH) (812.18 ± 51.12 Trolox equivalents per gram of dry mass of plant extracts (µmol TE/g), TEAC (631.63 ± 17.42 µmol TE/g)), while the chloroform extract included polyphenols (39.93 ± 1.36 mg GAE/g), flavonols (44.81 ± 3.74 mg QE/g); antioxidant capacity, DPPH (58.70 ± 5.18 µmol TE/g), TEAC (118.63 ± 3.74 µmol TE/g) and FRAP (107.10 ± 2.41 µmol AAE/g). The phytochemicals profiling performed by UPLC-ESI-QTOF-MS revealed some important polyphenols, predominantly flavonoids, that could be responsible for the antioxidant capacity and biological effects. Both extracts demonstrated a dose-dependent manner of the alpha-glucosidase inhibition with an IC50 between 125 and 250 µg/mL for methanolic extract, while the chloroform extract was at 250 µg/mL. In the L6 myoblasts and C3A hepatocytes, the methanolic extract slightly increased the utilization of glucose, and both extracts exhibited a dose-dependent increase in the glucose uptake in both cell types without significantly increasing the cytotoxicity. Furthermore, both extracts exhibited an anti-inflammatory potential and the findings from the present study could serve as a baseline for further research in the development of pharmaceutical agents.


Subject(s)
Antioxidants , Chloroform , Antioxidants/pharmacology , Hypoglycemic Agents/pharmacology , Phenols/pharmacology , Polyphenols/pharmacology , Plant Extracts/pharmacology , Flavonols , Ascorbic Acid , Anti-Inflammatory Agents/pharmacology
5.
Saudi J Biol Sci ; 29(5): 3122-3132, 2022 May.
Article in English | MEDLINE | ID: mdl-35355957

ABSTRACT

Hyperglycemia is a central trait of diabetes mellitus (DM) and is linked to an increase in free radical generation and oxidative stress in the testes, resulting in testicular tissue damage and male infertility. Synthetic medicines are commonly used to manage diabetes; however, they are costly and associated with adverse effects. As a result, the search for a safer and affordable alternative from medicinal plants that contain antioxidants has become imperative to scavenge free radicals caused by hyperglycaemia, thereby alleviating male reproductive dysfunction. Therefore, the present aimed to investigate the ameliorative effects of Anchomanes difformis aqueous extract against oxidative stress in the testes and epididymis of streptozotocin-induced diabetic male Wistar rats. A total of 64 male Wistar rats (eight weeks old) weighing 180 ± 10 mg/kg were divided into seven groups at random. Type 2 diabetic mellitus (T2DM) was induced by streptozotocin (STZ) and a 10% fructose injection intraperitoneally using 40 mg/kg body weight rats. The levels of malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) activity, reduced glutathione (GSH) concentration, and ferric reducing antioxidant (FRAP) as well as 2, 2-diphenyl-1-picrylhydrazyl (DPPH) values were used to establish the testicular oxidative status. It was found that A. difformis extract significantly (p < 0.05) lowered MDA levels in diabetic rats. Both CAT and SOD activity were significantly (p < 0.05) lower following induction of DM and increased (p < 0.05) after treating with A. difformis. The findings of this study show that A. difformis extract could be a promising source of lead compounds for the development of a therapeutic agent to treat male infertility caused by DM complications.

6.
Article in English | MEDLINE | ID: mdl-35343361

ABSTRACT

DNAzymes (catalytic DNA) have gained significant diagnostic and therapeutic applications with increasing research output over the years. Functional oligonucleotides are used as molecular recognition elements within biosensors for detection of analytes and viral infections such as SARS-CoV-2. DNAzymes are also applied for silencing and regulating cancer specific genes. However, there has not been any report on systematic analysis to track research status, reveal hotspots, and map knowledge in this field. Therefore, in the present study, research articles on DNAzymes from 1995 to 2019 were extracted from Web of Science (SCI-Expanded) after which, 1037 articles were imported into Rstudio (version 3.6.2) and analysed accordingly. The highest number of articles was published in 2019 (n = 138), while the least was in 1995 (n = 1). The articles were published across 216 journals by 2344 authors with 2337 multi-author and 7 single authors. The most prolific authors were Li Y (n = 47), Liu J (n = 46), Wang L (n = 33), Willner I (n = 33) and Zhang L (n = 33). The top three most productive countries were China (n = 2018), USA (n = 447) and Canada (n = 251). The most productive institutions were Hunan University, China (n = 141), University of Illinois, USA (n = 139) and Fuzhou University, China (n = 101). Despite the increasing interest in this field, international collaborations between institutions were very low which requires immediate attention to mitigate challenges such as limited funding, access to facilities, and existing knowledge gap.


Subject(s)
COVID-19 , DNA, Catalytic , Bibliometrics , COVID-19/diagnosis , Humans , Publications , SARS-CoV-2
7.
Vet World ; 15(11): 2525-2534, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36590130

ABSTRACT

Background and Aim: Human exposure to aluminum is inevitable, and one of the most adverse health effects of aluminum is a decrease in male fertility rates. Therefore, this study investigated the ameliorative effects of an aqueous extract from Laurus nobilis-bay leaf (BL) on aluminum chloride (AlCl3)-induced testicular toxicity in rats. Materials and Methods: Twenty-four Wistar rats were divided into four groups (n = 6, each group): The control (group 1) received normal saline; Group 2 animals were intraperitoneally administered with 30 mg/kg body weight (BW) AlCl3; and Groups 3 and 4 were co-administered AlCl3 with 125 or 250 mg/kg BW of BL extract, respectively, for 21 days. Testes, epididymis, and blood samples were collected. Testicular plasma enzyme activity was measured using a spectrophotometric assay, while concentrations of inflammatory biomarkers were determined using enzyme-linked immunosorbent assay kits. Results: There was a significant increase (p < 0.05) in testicular enzyme activity in the group treated with AlCl3. However, there was no significant (p > 0.05) difference in testicular enzyme activity in groups co-administered AlCl3 and BL extract as compared with that in control. There was a significant (p < 0.05) increase in testicular nitrite concentration in the AlCl3-treated group, whereas the administration of BL extract significantly (p < 0.05) decreased nitrite concentration in Groups 3 and 4. Furthermore, the administration of BL extracts increased sperm count and improved the morphology of the testes in AlCl3-treated rats. Flavonoids, phenolic compounds, alkaloids, tannin, glycosides, saponin, anthraquinones, and steroids were identified in BL extract, with alkaloids and glycosides being the most abundant. Conclusion: Aqueous extract from BL ameliorated the toxic effect of AlCl3 and exhibited anti-inflammatory properties by inhibiting nitrite production while improving sperm count and morphology in AlCl3-treated rats. The bioactivity of the extract may be attributed to the presence of a wide range of phytochemicals. Therefore, BL aqueous extract could be a promising source of novel compounds with male fertility-promoting and anti-inflammatory properties.

8.
Plants (Basel) ; 10(9)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34579425

ABSTRACT

Clerodendrum volubile is an underutilized leafy vegetable consumed in some parts of Nigeria. The interest in C. volubile has continued to increase due to its multipurpose values, including traditional uses, nutritional properties, and some therapeutic potentials; however, the pharmacological prospects of the plant are yet to be fully explored. Therefore, in the present review, different databases such as PubMed, Scopus, Web of Science, Google Scholar, etc. were explored to retrieve publications used to write this review. The pharmacological potentials of C. volubile, such as anticancer, antioxidant, antiviral, antimicrobial, anti-inflammatory, hepatoprotective, antidiabetic, and anti-hypertensive properties, were highlighted. The toxicological potential of the plant is also discussed. Proposed mechanisms that underline its biological activities include modulation of redox homeostasis, leading to decreased oxidative stress; down-regulation of matrix metalloproteinase-9 (MMP-9) expression; inhibition of key enzymes implicated in diabetes mellitus, hypertension, and neurological diseases; and inhibition of oxidative burst and inflammatory cytokines. Furthermore, the prospect of endophytes from C. volubile as a bioresource to produce novel therapeutic agents, as well as the development of nanotherapeutics from the plant extracts and its phytoconstituents, are discussed. In conclusion, C. volubile possesses an enormous number of possible pharmacological properties and therapeutic potentials waiting to be explored.

9.
Article in English | MEDLINE | ID: mdl-34199632

ABSTRACT

The African continent is naturally endowed with various plant species with nutritional and medicinal benefits. About 80% of the people in developing countries rely on folk medicines to treat different diseases because of indigenous knowledge, availability, and cost-effectiveness. Extensive research studies have been conducted on the medicinal uses of African plants, however, the therapeutic potentials of some of these plants has remained unexploited. Over the years, several studies have revealed that some of these African floras are promising candidates for the development of novel drugs. Despite the plethora of studies on medicinal plant research in Africa, there is still little scientific data supporting the folkloric claims of these plants. Besides, safety in the use of folk medicines has been a major public health concern over the year. Therefore, it has become mandatory that relevant authority should take measures in safeguarding the populace on the use of herbal mixtures. Thus, the present review extracted relevant information from different scientific databases and highlighted some problems associated with folk medicines, adverse effects on reproductive systems, issue about safety due to the toxicity of some plants and their toxicity effects with potential therapeutic benefits are discussed.


Subject(s)
Antineoplastic Agents , Plants, Medicinal , Africa , Humans , Medicine, African Traditional , Phytotherapy
10.
Front Neurosci ; 15: 648484, 2021.
Article in English | MEDLINE | ID: mdl-33994926

ABSTRACT

Microbial infections have been linked to the pathogenesis and pathophysiology of Alzheimer's disease (AD) and other neurodegenerative diseases. The present study aimed to synthesise and assess global evidence of microbial pathogenesis and pathophysiology in AD (MPP-AD) and associated neurodegenerative conditions using integrated science mapping and content analytics to explore the associated research landscape. Relevant MPP-AD documents were retrieved from Web of Science and Scopus according to PRISMA principles and analysed for productivity/trend linked to authors/countries, thematic conceptual framework, and international collaborative networks. A total of 258 documents published from 136 sources to 39.42 average citations/document were obtained on MPP-AD. The co-authors per document were 7.6, and the collaboration index was 5.71. The annual research outputs increased tremendously in the last 6 years from 2014 to 2019, accounting for 66% compared with records in the early years from 1982 to 1990 (16%). The USA (n = 71, freq. = 30.34%), United Kingdom (n = 32, freq. = 13.68%) and China (n = 27, 11.54%) ranked in first three positions in term of country's productivity. Four major international collaboration clusters were found in MPP-AD research. The country collaboration network in MPP-AD was characteristic of sparse interaction and acquaintanceship (density = 0.11, diameter = 4). Overall, international collaboration is globally inadequate [centralisation statistics: degree (40.5%), closeness (4%), betweenness (23%), and eigenvector (76.7%)] against the robust authors' collaboration index of 5.71 in MPP-AD research. Furthermore, four conceptual thematic frameworks (CTF) namely, CTF#1, roles of microbial/microbiome infection and dysbiosis in cognitive dysfunctions; CTF#2, bacterial infection specific roles in dementia; CTF#3, the use of yeast as a model system for studying MPP-AD and remediation therapy; and CFT#4, flow cytometry elucidation of amyloid-beta and aggregation in Saccharomyces cerevisiae model. Finally, aetiology-based mechanisms of MPP-AD, namely, gut microbiota, bacterial infection, and viral infection, were comprehensively discussed. This study provides an overview of MPP-AD and serves as a stepping stone for future preparedness in MPP-AD-related research.

11.
Saudi J Biol Sci ; 28(5): 2914-2924, 2021 May.
Article in English | MEDLINE | ID: mdl-34025169

ABSTRACT

Diabetes mellitus (DM) is one of the leading causes of mortality in South Africa, which is impelled by people's consumption of unhealthy diets and lifestyles, negligence about an individual's health status, and increased urbanization. DM can be linked to several human diseases and thus, making it an important public health issue in the South African health sector. Therefore, it is necessary to assess the level of research that has been conducted in the country on diabetes, in a quest for solutions against the deadly disease. Hence, the present study aimed to map diabetes-related research in South Africa from 2010 to 2019. Data on the subject was retrieved from the Web of Science Core Collection (WoSCC) and bibliometrix package in Rstudio statistical software was used to analyze the data while VOSviewer was explored for data visualization networks. Our analysis revealed that the annual growth rate of publication trends was 23.2%. The authors per document were 23.3 with a collaboration index of 23.4. From the 416 articles analyzed, Islam MS (n = 34) was the most prolific author and the top active institution was University of KwaZulu-Natal (n = 165) and the top journal was Diabetes Research and Clinical Practice (n = 20). Findings from this study reveal that the quantity of research on diabetes has significantly increased over the decade, and the outcomes of this scientific progress can guide future research and substantially provide the basic needs for improving management procedures for diabetes in the country.

12.
Saudi J Biol Sci ; 27(12): 3559-3569, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304167

ABSTRACT

Boophone disticha (B. disticha) is a bulbous tropical and subtropical flowering plant widespread in Africa, which is frequently used to treat several human ailments. Until the present, there is no scientific validation on the biological activity of this plant from the Eastern Cape Province of South Africa and as a result, this study aimed to assess the bioactive compounds, free radicals scavenging and anticancer potentials of crude bulb extracts (chloroform, acetone, and ethanol) of Boophone disticha obtained from this geographical location. Standard biochemical techniques and Gas-chromatography mass spectrometry (GCMS) analysis were used to pinpoint the bioactive compounds in the crude extracts sequel to their antioxidant potentials against radicals such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydrogen peroxide and nitric oxide as well as their ferric ion reducing power. In addition, their cytotoxicity effects against Human cervix adenocarcinoma (HeLa) cells were assessed as an in vitro model for anticancer. The phytochemical evaluation of the crude extracts showed the presence of phenolics, flavonoids, and alkaloids. GCMS profiles confirmed the presence of some bioactive compounds in the crude extracts of B. disticha that could be responsible for their biological activities. The plant extracts possessed considerable antioxidant activity and exhibited dose-dependent radicals' inhibition from all assays carried out. Furthermore, the cytotoxicity effects against HeLa cells recorded inhibition concentration (IC50) of 1.5, 1.6, and 1.9 µg/mL for acetone, chloroform, and ethanolic extracts of B. disticha, respectively. Findings from the present study suggest that B. disticha could be a good prospective source of antioxidant and anticancer agents. Therefore, further research on the isolation and purification of compounds from these extracts are indispensable.

13.
J Comput Chem ; 41(24): 2158-2161, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32779780

ABSTRACT

D614G spike glycoprotein (sgp) mutation in rapidly spreading severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) is associated with enhanced fitness and higher transmissibility in new cases of COVID-19 but the underlying mechanism is unknown. Here, using atomistic simulation, a plausible mechanism has been delineated. In G614 sgp but not wild type, increased D(G)614-T859 Cα-distance within 65 ns is interpreted as S1/S2 protomer dissociation. Overall, ACE2-binding, post-fusion core, open-state and sub-optimal antibody-binding conformations were preferentially sampled by the G614 mutant, but not wild type. Furthermore, in the wild type, only one of the three sgp chains has optimal communication route between residue 614 and the receptor-binding domain (RBD); whereas, two of the three chains communicated directly in G614 mutant. These data provide evidence that D614G sgp mutant is more available for receptor binding, cellular invasion and reduced antibody interaction; thus, providing framework for enhanced fitness and higher transmissibility in D614G SARS-COV-2 mutant.


Subject(s)
Betacoronavirus/metabolism , Computer Simulation , Coronavirus Infections/virology , Models, Chemical , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Binding Sites , COVID-19 , Humans , Models, Molecular , Mutation , Pandemics , Protein Binding , Protein Conformation , Protein Domains , SARS-CoV-2
14.
3 Biotech ; 10(3): 141, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32206490

ABSTRACT

In the present study, we evaluated the phytochemical compounds and antioxidant properties of chloroform, ethanol and acetone extracts for leaves and flowers of Leonutus leonurus (L. leonurus) alongside with their cytotoxic effects on human cervical carcinoma (HeLa) cell lines. The phytochemical compounds present in the leaves and flowers of L. leonurus included; phenolics, flavonoids and alkaloids. Their radicals scavenging effects against 2, 2-diphenyl-1-picrylhydrazyl [DPPH] 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) [ABTS·+], hydrogen peroxide, nitric oxide as well as metal chelating activities showed dose-dependent activities. Gas chromatography-mass spectrometry (GCMS) analyses revealed the presence of important bioactive compounds, which are associated with antioxidant; and the extracts exhibited toxicity effect against HeLa cells. The findings from this study divulge extracts of L. leonurus as prospective sources of antioxidant and anticancer agents; and hence, further study on their neuroprotective potentials becomes imperative.

15.
Molecules ; 24(23)2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31801244

ABSTRACT

In this present study, silver nanoparticles (Ag/AgCl NPs) were synthesized using an aqueous leaf extract of Oedera genistifolia as a reducing agent. The biosynthesized Ag/AgCl NPs was characterized by UV-visible spectrophotometry, transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). In addition, sequel to antibacterial assay, the cytotoxic effect of the phytofabricated Ag/AgCl NPs was assessed against the HeLa cell line (human cervix adenocarcinoma). The results of the characterization of the synthesized Ag/AgCl NPs indicate the successful synthesis using plant extract as a reducing agent, with UV-Vis spectra between 290-360 nm. TEM results showed that Ag/AgCl NPs was spherical in shape with an average size of 34.2 nm. EDX analysis revealed that the particles were predominantly composed of carbon, oxygen, chlorine, and silver, while FTIR identified major phytochemical compounds, which could be responsible for bio-reducing and capping potential. XRD analysis showed the crystallinity of Ag/AgCl NPs, with a face-centred cubic structure. The studied Ag/AgCl NPs had no cytotoxic effect on HeLa cells and exhibited antibacterial activity (minimum inhibitory concentration (MIC) 0.25-1 mg/mL; minimum bactericidal concentration (MBC) 2-16 mg/mL) against both the Gram-negative and Gram-positive bacteria investigated. Findings from this study suggest that this plant as a good candidate for producing new antibacterial drugs.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Asteraceae/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Silver Compounds/chemistry , Silver/chemistry , HeLa Cells , Humans , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Leaves/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis
16.
Article in English | MEDLINE | ID: mdl-28961180

ABSTRACT

Bioflocculants mediate the removal of suspended particles from solution and the efficiency of flocculation is dependent on the characteristics of the flocculant. Apart from the merits of biodegradability and harmlessness, bioflocculants could be viable as industrially relevant flocculants as they are a renewable resource. Additionally, the shortcomings associated with the conventionally used flocculants such as aluminium salts and acrylamide polymers, which include dementia and cancer, highlight more the need to use bioflocculants as an alternative. Consequently, in this study a marine sediment bacterial isolate was screened for bioflocculant production. Basic local alignment search tools (BLAST) analysis of 16S ribosomal deoxyribonucleic acid (rDNA) sequence of the bacterial isolate showed 98% similarity to Bacillus thuringiensis MR-R1. The bacteria produced bioflocculant optimally with inoculum size (4% v/v) (85%), glucose (85.65%) and mixed nitrogen source (urea, ammonium chloride and yeast extract) (75.9%) and the divalent cation (Ca2+) (62.3%). Under optimal conditions, a maximum flocculating activity of over 85% was attained after 60 h of cultivation. The purified polysaccharide-bioflocculant flocculated optimally at alkaline pH 12 (81%), in the presence of Mn2+ (73%) and Ca2+ (72.8%). The high flocculation activity shown indicates that the bioflocculant may contend favourably as an alternative to the conventionally used flocculants in water treatment.


Subject(s)
Bacillus/metabolism , Bays , Geologic Sediments/microbiology , Polysaccharides/chemistry , Bacillus/genetics , Flocculation , Nitrogen , Polysaccharides/metabolism , South Africa
17.
3 Biotech ; 7(1): 78, 2017 May.
Article in English | MEDLINE | ID: mdl-28500400

ABSTRACT

Bioflocculants are secondary metabolites produced by microorganisms during their growth which have received attentions due to their biodegradability, innocuousness and lack of secondary pollution from degradation intermediates. This study reports on a bioflocculant produced by Bacillus specie isolated from Thyume River in South Africa. The bacterial isolate was identified through 16S rDNA sequencing and the BLAST analysis of the nucleotide sequences revealed 99% similarity to Bacillus sp. BCT-7112. The sequence was subsequently deposited in the GenBank as Bacillus sp. AEMREG4 with accession number KP406729. The optimum culture conditions for bioflocculant production were an inoculum size 4% (v/v) (80%) and starch (81%) as well as yeast extract (82%) as sole carbon and nitrogen sources, respectively. Addition of Ca2+ greatly enhanced the flocculating activity (76%) of crude bioflocculant over a wide range of pH 4-10 and retained high flocculating activity when heated at 100 °C for 1 h. Chemical analyses of the purified bioflocculant revealed carbohydrate (79% w/w) as a predominant component followed by uronic acid (15% w/w) and protein (5% w/w). Fourier transform infrared spectrum revealed the presence of carboxyl, hydroxyl and methoxyl groups as the functional groups responsible for flocculation and the high flocculation activity achieved portends its industrial applicability.

18.
Microbiologyopen ; 5(2): 177-211, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26914994

ABSTRACT

Chemical flocculants are generally used in drinking water and wastewater treatment due to their efficacy and cost effectiveness. However, the question of their toxicity to human health and environmental pollution has been a major concern. In this article, we review the application of some chemical flocculants utilized in water treatment, and bioflocculants as a potential alternative to these chemical flocculants. To the best of our knowledge, there is no report in the literature that provides an up-to-date review of the relevant literature on both chemical flocculants and bioflocculants in one paper. As a result, this review paper comprehensively discussed the various chemical flocculants used in water treatment, including their advantages and disadvantages. It also gave insights into bioflocculants production, challenges, various factors influencing their flocculating efficiency and their industrial applications, as well as future research directions including improvement of bioflocculants yields and flocculating activity, and production of cation-independent bioflocculants. The molecular biology and synthesis of bioflocculants are also discussed.


Subject(s)
Inorganic Chemicals , Organic Chemicals , Public Health , Water Purification , Carbon/chemistry , Cost-Benefit Analysis , Environmental Pollution , Flocculation , Humans , Hydrogen-Ion Concentration , Inorganic Chemicals/adverse effects , Inorganic Chemicals/chemistry , Inorganic Chemicals/classification , Ions/chemistry , Metals/chemistry , Molasses , Nitrogen/chemistry , Organic Chemicals/adverse effects , Organic Chemicals/chemistry , Organic Chemicals/classification , Temperature , Wastewater/chemistry
19.
Environ Technol ; 37(14): 1829-42, 2016.
Article in English | MEDLINE | ID: mdl-26797258

ABSTRACT

This study assessed the bioflocculant (named MBF-W7) production potential of a bacterial isolate obtained from Algoa Bay, Eastern Cape Province of South Africa. The 16S ribosomal deoxyribonucleic acids gene sequence analysis showed 98% sequence similarity to Bacillus licheniformis strain W7. Optimum culture conditions for MBF-W7 production include 5% (v/v) inoculum size, maltose and NH4NO3 as carbon and nitrogen sources of choice, medium pH of 6 as the initial pH of the growth medium. Under these optimal conditions, maximum flocculating activity of 94.9% was attained after 72 h of cultivation. Chemical composition analyses showed that the purified MBF-W7 was a glycoprotein which was predominantly composed of polysaccharides 73.7% (w/w) and protein 6.2% (w/w). Fourier transform infrared spectroscopy revealed the presence of hydroxyl, carboxyl and amino groups as the main functional groups identified in the bioflocculant molecules. Thermogravimetric analyses showed the thermal decomposition profile of MBF-W7. Scanning electron microscopy imaging revealed that bridging played an important role in flocculation. MBF-W7 exhibited excellent flocculating activity for kaolin clay suspension at 0.2 mg/ml over a wide pH range of 3-11; with the maximal flocculation rate of 85.8% observed at pH 3 in the presence of Mn(2+). It maintained and retained high flocculating activity of over 70% after heating at 100°C for 60 min. MBF-W7 showed good turbidity removal potential (86.9%) and chemical oxygen demand reduction efficiency (75.3%) in Tyume River. The high flocculating rate of MBF-W7 makes it an attractive candidate to replace chemical flocculants utilized in water treatment.


Subject(s)
Bacillus/metabolism , Water Purification/methods , Bacterial Proteins , Carbon , Culture Media , Flocculation , Kaolin , Nitrogen , Polysaccharides , South Africa
20.
Water Environ Res ; 87(4): 298-303, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26462073

ABSTRACT

The flocculating efficiency and physiochemical properties of purified bioflocculant produced by Halomonas sp. Okoh were investigated. Approximately 1.213 g/L of bioflocculant was recovered after fermentation under predetermined ambient conditions. Jar test experimentation revealed optimum bioflocculant concentration as 0.2 mg/mL with flocculation activity of 66.1%. The thermostable bioflocculant retained high flocculation activity after heat treatment at 100 °C for 30 minutes; flocculation activity of 74% was achieved. Chemical analysis showed that the bioflocculant was composed of sugar (26.5%), protein (2.64%), and uronic acid (13.3%). The Fourier infrared spectroscopy spectrum of the purified bioflocculant revealed the presence of hydroxyl and carboxylic functional groups. Thermogravimetric analyses showed a varied decomposition step, thus, an indication of varied composition. Scanning electron micrograph revealed the amorphous structure of the bioflocculant. These results suggest potential applicability of the bioflocculant produced by Halomonas sp. Okoh industrially.


Subject(s)
Biopolymers/biosynthesis , Biopolymers/chemistry , Halomonas/metabolism , Biopolymers/isolation & purification , Chemical Phenomena , Flocculation , Hydrogen-Ion Concentration , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...