Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1881): 20220196, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37246378

ABSTRACT

With climate, biodiversity and inequity crises squarely upon us, never has there been a more pressing time to rethink how we conceptualize, understand and manage our relationship with Earth's biodiversity. Here, we describe governance principles of 17 Indigenous Nations from the Northwest Coast of North America used to understand and steward relationships among all components of nature, including humans. We then chart the colonial origins of biodiversity science and use the complex case of sea otter recovery to illuminate how ancestral governance principles can be mobilized to characterize, manage and restore biodiversity in more inclusive, integrative and equitable ways. To enhance environmental sustainability, resilience and social justice amid today's crises, we need to broaden who benefits from and participates in the sciences of biodiversity by expanding the values and methodologies that shape such initiatives. In practice, biodiversity conservation and natural resource management need to shift from centralized, siloed approaches to those that can accommodate plurality in values, objectives, governance systems, legal traditions and ways of knowing. In doing so, developing solutions to our planetary crises becomes a shared responsibility. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.


Subject(s)
Biodiversity , Social Justice , Humans , North America , Climate , Conservation of Natural Resources , Ecosystem
2.
Am Nat ; 200(1): 168-180, 2022 07.
Article in English | MEDLINE | ID: mdl-35737985

ABSTRACT

AbstractThis essay explores shifting scientific understandings of fish and the evolution of fisheries science, and it grapples with colonialism as a system of power. We trace the rise of fisheries science to a time when Western nation-states were industrializing fishing fleets and competing for access to distant fishing grounds. A theory of fishing called "maximum sustainable yield" (MSY) that understands fish species in aggregate was espoused. Although alternatives to MSY have been developed, decision-making continues to be informed by statistical models developed within fisheries science. A challenge for structured management systems now rests in attending to different systems of knowledge and addressing local objectives, values, and circumstances. To deepen and illustrate key points, we examine Pacific herring (Clupea pallasii) and the expansion of commercial herring fisheries and state-led management in British Columbia, Canada. A feedback between colonialism and fisheries science is evident: colonialism generated the initial conditions for expansion and has been reinforced through the implementation of approaches and tools from fisheries science that define and quantify conservation in particular ways. Some features may be unique to the herring illustration, but important aspects of the feedback are more broadly generalizable. We propose three interconnected goals: (a) transform the siloed institutions and practices of Western science, (b) reimagine and rebuild pathways between information (including diverse values and perspectives) and decision-making, and (c) devolve governance authority and broaden governance processes such that multiple ways of knowing share equal footing.


Subject(s)
Colonialism , Fisheries , Animals , British Columbia , Conservation of Natural Resources , Feedback , Fishes , Humans , Models, Statistical
4.
Ecol Appl ; 31(4): e02304, 2021 06.
Article in English | MEDLINE | ID: mdl-33587791

ABSTRACT

Distinguishing between human impacts and natural variation in abundance remains difficult because most species exhibit complex patterns of variation in space and time. When ecological monitoring data are available, a before-after-control-impact (BACI) analysis can control natural spatial and temporal variation to better identify an impact and estimate its magnitude. However, populations with limited distributions and confounding spatial-temporal dynamics can violate core assumptions of BACI-type designs. In this study, we assessed how such properties affect the potential to identify impacts. Specifically, we quantified the conditions under which BACI analyses correctly (or incorrectly) identified simulated anthropogenic impacts in a spatially and temporally replicated data set of fish, macroalgal, and invertebrate species found on nearshore subtidal reefs in southern California, USA. We found BACI failed to assess very localized impacts, and had low power but high precision when assessing region-wide impacts. Power was highest for severe impacts of moderate spatial scale, and impacts were most easily detected in species with stable, widely distributed populations. Serial autocorrelation in the data greatly inflated false impact detection rates, and could be partly controlled for statistically, while spatial synchrony in dynamics had no consistent effect on power or false detection rates. Unfortunately, species that offer high power to detect real impacts were also more likely to detect impacts where none had occurred. However, considering power and false detection rates together can identify promising indicator species, and collectively analyzing data for similar species improved the net ability to assess impacts. These insights set expectations for the sizes and severities of impacts that BACI analyses can detect in real systems, point to the importance of serial autocorrelation (but not of spatial synchrony), and indicate how to choose the species, and groups of species, that can best identify impacts.


Subject(s)
Kelp , Animals , Ecosystem , Fishes , Forests , Humans , Population Dynamics
5.
Sci Rep ; 10(1): 8483, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32439960

ABSTRACT

Global biodiversity hotspots (GBHs) are increasingly vulnerable to human stressors such as anthropogenic climate change, which will alter the ecology of these habitats, even where protected. The longleaf pine (Pinus palustris) ecosystem (LPE) of the North American Coastal Plain is a GBH where disturbances are integral for ecosystem maintenance. However, stronger storms due to climate change may be outside their historical norm. In this study, we estimate the extent of Florida LPE that was directly affected by Hurricane Michael in 2018, an unprecedented Category 5 storm. We then leveraged a unique data set in a Before-After study of four sites within this region. We used variable-area transects and generalized linear mixed-effects models to estimate tree densities and logistic regression to estimate mortality by size class. We found at least 28% of the global total remaining extent of LPE was affected in Florida alone. Mortality was highest in medium sized trees (30-45 cm dbh) and ranged from 4.6-15.4% at sites further from the storm center, but increased to 87.8% near the storm center. As the frequency and intensity of extreme events increases, management plans to mitigate climate change need to account for large-scale stochastic mortality events to preserve critical habitats.

6.
Ecol Appl ; 30(3): e02051, 2020 04.
Article in English | MEDLINE | ID: mdl-31820525

ABSTRACT

Unanticipated declines among exploited species have commonly occurred despite harvests that appeared sustainable prior to collapse. This is particularly true in the oceans where spatial scales of management are often mismatched with spatially complex metapopulations. We explore causes, consequences, and potential solutions for spatial mismatches in harvested metapopulations in three ways. First, we generate novel theory illustrating when and how harvesting metapopulations increases spatial variability and in turn masks local-scale volatility. Second, we illustrate why spatial variability in harvested metapopulations leads to negative consequences using an empirical example of a Pacific herring metapopulation. Finally, we construct a numerical management strategy evaluation model to identify and highlight potential solutions for mismatches in spatial scale and spatial variability. Our results highlight that spatial complexity can promote stability at large scales, however, ignoring spatial complexity produces cryptic and negative consequences for people and animals that interact with resources at small scales. Harvesting metapopulations magnifies spatial variability, which creates discrepancies between regional and local trends while increasing risk of local population collapses. Such effects asymmetrically impact locally constrained fishers and predators, which are more exposed to risks of localized collapses. Importantly, we show that dynamically optimizing harvest can minimize local risk without sacrificing yield. Thus, multiple nested scales of management may be necessary to avoid cryptic collapses in metapopulations and the ensuing ecological, social, and economic consequences.


Subject(s)
Ecosystem , Fishes , Animals , Humans , Oceans and Seas , Population Dynamics
7.
Nat Ecol Evol ; 3(10): 1438-1444, 2019 10.
Article in English | MEDLINE | ID: mdl-31558830

ABSTRACT

Climate change is causing major changes to marine ecosystems globally, with ocean acidification of particular concern for coral reefs. Using a 200 d in situ carbon dioxide enrichment study on Heron Island, Australia, we simulated future ocean acidification conditions, and found reduced pH led to a drastic decline in net calcification of living corals to no net growth, and accelerated disintegration of dead corals. Net calcification declined more severely than in previous studies due to exposure to the natural community of bioeroding organisms in this in situ study and to a longer experimental duration. Our data suggest that reef flat corals reach net dissolution at an aragonite saturation state (ΩAR) of 2.3 (95% confidence interval: 1.8-2.8) with 100% living coral cover and at ΩAR > 3.5 with 30% living coral cover. This model suggests that areas of the reef with relatively low coral mortality, where living coral cover is high, are likely to be resistant to carbon dioxide-induced reef dissolution.


Subject(s)
Anthozoa , Animals , Australia , Ecosystem , Hydrogen-Ion Concentration , Seawater , Solubility
8.
Proc Biol Sci ; 285(1883)2018 07 25.
Article in English | MEDLINE | ID: mdl-30051864

ABSTRACT

While changes in the abundance of keystone predators can have cascading effects resulting in regime shifts, the role of mesopredators in these processes remains underexplored. We conducted annual surveys of rocky reef communities that varied in the recovery of a keystone predator (sea otter, Enhydra lutris) and the mass mortality of a mesopredator (sunflower sea star, Pycnopodia helianthoides) due to an infectious wasting disease. By fitting a population model to empirical data, we show that sea otters had the greatest impact on the mortality of large sea urchins, but that Pycnopodia decline corresponded to a 311% increase in medium urchins and a 30% decline in kelp densities. Our results reveal that predator complementarity in size-selective prey consumption strengthens top-down control on urchins, affecting the resilience of alternative reef states by reinforcing the resilience of kelp forests and eroding the resilience of urchin barrens. We reveal previously underappreciated species interactions within a 'classic' trophic cascade and regime shift, highlighting the critical role of middle-level predators in mediating rocky reef state transitions.


Subject(s)
Food Chain , Kelp , Otters , Starfish , Animals , Body Size , British Columbia , Population Density
9.
Glob Chang Biol ; 24(5): 2105-2116, 2018 05.
Article in English | MEDLINE | ID: mdl-29265499

ABSTRACT

Mounting evidence suggests that anthropogenic global change is altering plant species composition in tropical forests. Fewer studies, however, have focused on long-term trends in reproductive activity, in part because of the lack of data from tropical sites. Here, we analyze a 28-year record of tropical flower phenology in response to anthropogenic climate and atmospheric change. We show that a multidecadal increase in flower activity is most strongly associated with rising atmospheric CO2 concentrations using yearly aggregated data. Compared to significant climatic factors, CO2 had on average an approximately three-, four-, or fivefold stronger effect than rainfall, solar radiation, and the Multivariate ENSO Index, respectively. Peaks in flower activity were associated with greater solar radiation and lower rainfall during El Niño years. The effect of atmospheric CO2 on flowering has diminished over the most recent decade for lianas and canopy trees, whereas flowering of midstory trees and shrub species continued to increase with rising CO2 . Increases in flowering were accompanied by a lengthening of flowering duration for canopy and midstory trees. Understory treelets did not show increases in flowering but did show increases in duration. Given that atmospheric CO2 will likely continue to climb over the next century, a long-term increase in flowering activity may persist in some growth forms until checked by nutrient limitation or by climate change through rising temperatures, increasing drought frequency and/or increasing cloudiness and reduced insolation.


Subject(s)
Climate Change , Flowers/physiology , Forests , Trees/physiology , Tropical Climate , Carbon Dioxide , Droughts , Reproduction , Temperature
10.
Ecol Evol ; 7(6): 1737-1750, 2017 03.
Article in English | MEDLINE | ID: mdl-28331584

ABSTRACT

In the coastal ocean, temporal fluctuations in pH vary dramatically across biogeographic ranges. How such spatial differences in pH variability regimes might shape ocean acidification resistance in marine species remains unknown. We assessed the pH sensitivity of the sea urchin Strongylocentrotus purpuratus in the context of ocean pH variability. Using unique male-female pairs, originating from three sites with similar mean pH but different variability and frequency of low pH (pHT ≤ 7.8) exposures, fertilization was tested across a range of pH (pHT 7.61-8.03) and sperm concentrations. High fertilization success was maintained at low pH via a slight right shift in the fertilization function across sperm concentration. This pH effect differed by site. Urchins from the site with the narrowest pH variability regime exhibited the greatest pH sensitivity. At this site, mechanistic fertilization dynamics models support a decrease in sperm-egg interaction rate with decreasing pH. The site differences in pH sensitivity build upon recent evidence of local pH adaptation in S. purpuratus and highlight the need to incorporate environmental variability in the study of global change biology.

11.
Proc Natl Acad Sci U S A ; 113(48): 13785-13790, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27849580

ABSTRACT

Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = -0.018 y-1). Our analysis identified declines in 38% of ecoregions for which there are data (-0.015 to -0.18 y-1), increases in 27% of ecoregions (0.015 to 0.11 y-1), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species.


Subject(s)
Ecosystem , Forests , Kelp/growth & development , Arctic Regions , Climate Change , Oceans and Seas
12.
Am Nat ; 187(5): E129-42, 2016 05.
Article in English | MEDLINE | ID: mdl-27105001

ABSTRACT

Competition among gametes for fertilization imposes strong selection. For external fertilizers, this selective pressure extends to eggs for which spawning conditions can range from sperm limitation (competition among eggs) to sexual conflict (overabundance of competing sperm toxic to eggs). Yet existing fertilization models ignore dynamics that can alter the functional nature of gamete interactions. These factors include attraction of sperm to eggs, egg crowding effects, or other nonlinearities in per capita rates of sperm-egg interaction. Such processes potentially allow egg concentrations to drastically affect viable fertilization probabilities. I experimentally tested whether such egg effects occur, using the urchin Strongylocentrotus purpuratus, and parameterized a newly derived model of fertilization dynamics and existing models modified to include such interactions. The experiments revealed that at low sperm concentrations, eggs compete for sperm, while at high sperm concentrations, eggs cooperatively reduce abnormal fertilization (a proxy for polyspermy). I show that these observations are consistent with declines in the per capita rate at which sperm and eggs interact as eggs increase in density. The results suggest a fitness trade-off of egg release during spawning: as sperm range from scarce to superabundant, interactions among eggs transition from highly competitive to cooperative in terms of viable fertilization probabilities.


Subject(s)
Strongylocentrotus purpuratus/physiology , Animals , Female , Fertilization , Male , Models, Biological , Ovum/physiology , Sperm-Ovum Interactions , Spermatozoa/physiology
13.
Ecol Lett ; 19(2): 153-162, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26607838

ABSTRACT

The degree to which population fluctuations arise from variable adult survival relative to variable recruitment has been debated widely for marine organisms. Disentangling these effects remains challenging because data generally are not sufficient to evaluate if and how adult survival rates are regulated by stochasticity and/or population density. Using unique time series for a largely unexploited reef fish, we found both population density and stochastic food supply impacted adult survival. The estimated effect of variable survival on adult abundance (both mean and variability) rivalled that of variable recruitment. Moreover, we show density-dependent adult survival can dampen impacts of stochastic recruitment. Thus, food variability may alter population fluctuations by simultaneously regulating recruitment and compensatory adult survival. These results provide an additional mechanism for why intensified density-independent mortality (via harvest or other means) amplifies population fluctuations and emphasises need for research evaluating the causes and consequences of variability in adult survival.

14.
Proc Biol Sci ; 279(1747): 4542-50, 2012 Nov 22.
Article in English | MEDLINE | ID: mdl-23015631

ABSTRACT

Reproductive rates and survival of young in animal populations figure centrally in generating management and conservation strategies. Model systems suggest that food supply can drive these often highly variable properties, yet for many wild species, quantifying such effects and assessing their implications have been challenging. We used spatially explicit time series of a well-studied marine reef fish (black surfperch Embiotoca jacksoni) and its known prey resources to evaluate the extent to which fluctuations in food supply influenced production of young by adults and survival of young to subadulthood. Our analyses reveal: (i) variable food available to both adults and to their offspring directly produced an order of magnitude variation in the number of young-of-year (YOY) produced per adult and (ii) food available to YOY produced a similar magnitude of variation in their subsequent survival. We also show that such large natural variation in vital rates can significantly alter decision thresholds (biological reference points) important for precautionary management. These findings reveal how knowledge of food resources can improve understanding of population dynamics and reduce risk of overharvest by more accurately identifying periods of low recruitment.


Subject(s)
Food Chain , Perciformes/physiology , Animals , Models, Theoretical , Population Density , Population Dynamics , Reproduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...