Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biochem ; 122(12): 1958-1967, 2021 12.
Article in English | MEDLINE | ID: mdl-34617313

ABSTRACT

The mammalian HSP105/110 family consists of four members, including Hsp105 and Apg-1, which function as molecular chaperones. Recently, we reported that Hsp105 knockdown increases sensitivity to the DNA-damaging agent Adriamycin but decreases sensitivity to the microtubule-targeting agent paclitaxel. However, whether the other Hsp105/110 family proteins have the same functional property is unknown. Here, we show that Apg-1 has different roles from Hsp105 in cell proliferation, cell division, and drug sensitivity. We generated the Apg-1-knockdown HeLa S3 cells by lentiviral expression of Apg-1-targeting short hairpin RNA. Knockdown of Apg-1 but not Hsp105 decreased cell proliferation. Apg-1 knockdown increased cell death upon Adriamycin treatment without affecting paclitaxel sensitivity. The cell synchronization experiment suggests that Apg-1 functions in mitotic progression at a different mitotic subphase from Hsp105, which cause difference in paclitaxel sensitivity. Since Apg-1 is overexpressed in certain types of tumors, Apg-1 may become a potential therapeutic target for cancer treatment without causing resistance to the microtubule-targeting agents.


Subject(s)
Cell Division , Drug Resistance, Neoplasm , HSP110 Heat-Shock Proteins/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , HSP110 Heat-Shock Proteins/genetics , HeLa Cells , Humans , Neoplasm Proteins/genetics , Neoplasms/genetics
2.
Exp Cell Res ; 352(2): 225-233, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28185835

ABSTRACT

The mammalian stress protein Hsp105α protects cells from stress conditions. Several studies have indicated that Hsp105α is overexpressed in many types of solid tumors, which contain hypoxic microenvironments. However, the role of Hsp105α in hypoxic tumors remains largely unknown. We herein demonstrated the involvement of Hsp105α in HIF-1 functions induced by the hypoxia-mimetic agent CoCl2. While Hsp105α is mainly localized in the cytoplasm under normal conditions, a treatment with CoCl2 induces the nuclear localization of Hsp105α, which correlated with HIF-1α expression levels. The overexpression of degradation-resistant HIF-1α enhances the nuclear localization of Hsp105α without the CoCl2 treatment. The CoCl2-dependent transcriptional activation of HIF-1, which is measured using a reporter gene containing a HIF-responsive element, is reduced by the knockdown of Hsp105α. Furthermore, the CoCl2-induced accumulation of HIF-1α is enhanced by heat shock, which results in the nuclear localization of Hsp105, and is suppressed by the knockdown of Hsp105. Hsp105 associates with HIF-1α in CoCl2-treated cells. These results suggest that Hsp105α plays an important role in the functions of HIF-1 under hypoxic conditions, in which Hsp105α enhances the accumulation and transcriptional activity of HIF-1 through the HIF-1α-mediated nuclear localization of Hsp105α.


Subject(s)
Cell Nucleus/metabolism , Cobalt/toxicity , HSP110 Heat-Shock Proteins/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Transcriptional Activation , Active Transport, Cell Nucleus , Cell Hypoxia , HEK293 Cells , HSP110 Heat-Shock Proteins/genetics , HeLa Cells , Heat-Shock Response , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Protein Binding , Response Elements
SELECTION OF CITATIONS
SEARCH DETAIL
...