Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 4(1): 182, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33568779

ABSTRACT

Glutathione (GSH) is an important antioxidant that plays a critical role in neuroprotection. GSH depletion in neurons induces oxidative stress and thereby promotes neuronal damage, which in turn is regarded as a hallmark of the early stage of neurodegenerative diseases. The neuronal GSH level is mainly regulated by cysteine transporter EAAC1 and its inhibitor, GTRAP3-18. In this study, we found that the GTRAP3-18 level was increased by up-regulation of the microRNA miR-96-5p, which was found to decrease EAAC1 levels in our previous study. Since the 3'-UTR region of GTRAP3-18 lacks the consensus sequence for miR-96-5p, an unidentified protein should be responsible for the intermediate regulation of GTRAP3-18 expression by miR-96-5p. Here, we discovered that RNA-binding protein NOVA1 functions as an intermediate protein for GTRAP3-18 expression via miR-96-5p. Moreover, we show that intra-arterial injection of a miR-96-5p-inhibiting nucleic acid to living mice by a drug delivery system using microbubbles and ultrasound decreased the level of GTRAP3-18 via NOVA1 and increased the levels of EAAC1 and GSH in the dentate gyrus of the hippocampus. These findings suggest that the delivery of a miR-96-5p inhibitor to the brain would efficiently increase the neuroprotective activity by increasing GSH levels via EAAC1, GTRAP3-18 and NOVA1.


Subject(s)
Dentate Gyrus/drug effects , Glutathione/metabolism , MicroRNAs/antagonists & inhibitors , Neuroprotective Agents/pharmacology , RNA-Binding Proteins/metabolism , Animals , Cell Line, Tumor , Dentate Gyrus/metabolism , Excitatory Amino Acid Transporter 3/genetics , Excitatory Amino Acid Transporter 3/metabolism , HEK293 Cells , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Injections, Intra-Arterial , Male , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Microbubbles , Neuro-Oncological Ventral Antigen , Neuroprotective Agents/administration & dosage , RNA-Binding Proteins/genetics , Ultrasonics , Up-Regulation
2.
Clocks Sleep ; 2(3): 282-307, 2020 09.
Article in English | MEDLINE | ID: mdl-33089205

ABSTRACT

Circadian rhythms are endogenous 24-h oscillators that regulate the sleep/wake cycles and the timing of biological systems to optimize physiology and behavior for the environmental day/night cycles. The systems are basically generated by transcription-translation feedback loops combined with post-transcriptional and post-translational modification. Recently, evidence is emerging that additional non-coding RNA-based mechanisms are also required to maintain proper clock function. MicroRNA is an especially important factor that plays critical roles in regulating circadian rhythm as well as many other physiological functions. Circadian misalignment not only disturbs the sleep/wake cycle and rhythmic physiological activity but also contributes to the development of various diseases, such as sleep disorders and neurodegenerative diseases. The patient with neurodegenerative diseases often experiences profound disruptions in their circadian rhythms and/or sleep/wake cycles. In addition, a growing body of recent evidence implicates sleep disorders as an early symptom of neurodegenerative diseases, and also suggests that abnormalities in the circadian system lead to the onset and expression of neurodegenerative diseases. The genetic mutations which cause the pathogenesis of familial neurodegenerative diseases have been well studied; however, with the exception of Huntington's disease, the majority of neurodegenerative diseases are sporadic. Interestingly, the dysfunction of microRNA is increasingly recognized as a cause of sporadic neurodegenerative diseases through the deregulated genes related to the pathogenesis of neurodegenerative disease, some of which are the causative genes of familial neurodegenerative diseases. Here we review the interplay of circadian rhythm disruption, sleep disorders and neurodegenerative disease, and its relation to microRNA, a key regulator of cellular processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...