Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 20(12): 1675-1683, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34734375

ABSTRACT

Lamps that emit 222 nm short-wavelength ultraviolet (UV) radiation can be safely used for sterilization without harming human health. However, there are few studies on the effects of 222 nm UVC (222-UVC) radiation exposure on plants compared with the effects of germicidal lamps emitting primarily 254 nm UVC (254-UVC) radiation. We investigated the growth inhibition and cell damage caused by 222-UVC exposure to Arabidopsis plants, especially mitochondrial dynamics, which is an index of damage caused by UVB radiation. Growth inhibition resulted from 254-UVC or 222-UVC exposure depending on the dose of UVC radiation. However, with respect to the phenotype of 222-UVC-irradiated plants, the leaves curled under 1 kJ m-2 and were markedly bleached under 10 kJ m-2 compared with those of plants irradiated with 254-UVC. The cellular state, especially the mitochondrial dynamics, of epidermal and mesophyll cells of Arabidopsis leaves exposed to 254-UVC or 222-UVC radiation was investigated using Arabidopsis plants expressing mitochondrial matrix-targeted yellow fluorescent protein (MT-YFP) under the control of Pro35S to visualize the mitochondria. 222-UVC (1 or 5 kJ m-2) severely damaged the guard cells within the epidermis, and YFP signals and chloroplast autofluorescence in guard cells within the epidermis exposed to 222-UVC (1 or 5 kJ m-2) were not detected compared with those in cells exposed to 254-UVC radiation. In addition, 222-UVC irradiation led to mitochondrial fragmentation in mesophyll cells, similar to the effects of 254-UVC exposure. These results suggest that 222-UVC severely damages guard cells and epidermal cells and that such damage might have resulted in growth inhibition.


Subject(s)
Arabidopsis , Ultraviolet Rays , Epidermal Cells , Epidermis , Humans , Sterilization , Ultraviolet Rays/adverse effects
2.
Plant J ; 94(3): 439-453, 2018 05.
Article in English | MEDLINE | ID: mdl-29430765

ABSTRACT

In mammalian cells, the transcription factor p53 plays a crucial role in transmitting DNA damage signals to maintain genome integrity. However, in plants, orthologous genes for p53 and checkpoint proteins are absent. Instead, the plant-specific transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) controls most of the genes induced by gamma irradiation and promotes DNA repair, cell cycle arrest, and stem cell death. To date, the genes directly controlled by SOG1 remain largely unknown, limiting the understanding of DNA damage signaling in plants. Here, we conducted a microarray analysis and chromatin immunoprecipitation (ChIP)-sequencing, and identified 146 Arabidopsis genes as direct targets of SOG1. By using ChIP-sequencing data, we extracted the palindromic motif [CTT(N)7 AAG] as a consensus SOG1-binding sequence, which mediates target gene induction in response to DNA damage. Furthermore, DNA damage-triggered phosphorylation of SOG1 is required for efficient binding to the SOG1-binding sequence. Comparison between SOG1 and p53 target genes showed that both transcription factors control genes responsible for cell cycle regulation, such as CDK inhibitors, and DNA repair, whereas SOG1 preferentially targets genes involved in homologous recombination. We also found that defense-related genes were enriched in the SOG1 target genes. Consistent with this finding, SOG1 is required for resistance against the hemi-biotrophic fungus Colletotrichum higginsianum, suggesting that SOG1 has a unique function in controlling the immune response.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , DNA Damage/genetics , Genes, Plant/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Arabidopsis/metabolism , Chromatin Immunoprecipitation , DNA Repair/genetics , Genes, p53/genetics , Inverted Repeat Sequences/genetics , Oligonucleotide Array Sequence Analysis , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...