Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Anal Sci ; 39(7): 1143-1149, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36959381

ABSTRACT

A new chemiluminescence (CL) method based on the chemiluminescent reaction between sulfide and an acidic permanganate solution was used to quantify sulfide in seawater. A terbium-pipemidic acid complex was used as CL enhancer. The method was used to determine sulfide in the concentration range of 1-30 µmol/L in artificial seawater samples. The limit of detection of the method was 21 nmol/L sulfide. The sensitivity of the CL method was eight times higher than that of the CL method reported previously. Br- ions, which are conservative ions, interfered with sulfide. We investigated the effects of salinity, water temperature, and interfering chemicals,such asheavy-metal ions and organic matter, on the performance of the CL method. In addition, sulfite-spiked natural seawater samples were analyzed. The results demonstrate that the CL method can be used to develop a deep-sea sulfide analyzer.

2.
Micromachines (Basel) ; 9(8)2018 Jul 27.
Article in English | MEDLINE | ID: mdl-30424303

ABSTRACT

Total ATP (adenosine triphosphate) concentration is a useful biochemical parameter for detecting microbial biomass or biogeochemical activity anomalies in the natural environment. In this study, we describe the development and evaluation of a new version of in situ ATP analyzer improved for the continuous and quantitative determination of ATP in submarine environments. We integrated a transparent microfluidic device containing a microchannel for cell lysis and a channel for the bioluminescence L⁻L (luciferin⁻luciferase) assay with a miniature pumping unit and a photometry module for the measurement of the bioluminescence intensity. A heater and a temperature sensor were also included in the system to maintain an optimal temperature for the L⁻L reaction. In this study, the analyzer was evaluated in deep sea environments, reaching a depth of 200 m using a remotely operated underwater vehicle. We show that the ATP analyzer successfully operated in the deep-sea environment and accurately quantified total ATP within the concentration lower than 5 × 10-11 M.

3.
Front Microbiol ; 8: 1135, 2017.
Article in English | MEDLINE | ID: mdl-28676800

ABSTRACT

Submarine mud volcanoes (SMVs) are formed by muddy sediments and breccias extruded to the seafloor from a source in the deep subseafloor and are characterized by the discharge of methane and other hydrocarbon gasses and deep-sourced fluids into the overlying seawater. Although SMVs act as a natural pipeline connecting the Earth's surface and subsurface biospheres, the dispersal of deep-biosphere microorganisms and their ecological roles remain largely unknown. In this study, we investigated the microbial communities in sediment and overlying seawater at two SMVs located on the Ryukyu Trench off Tanegashima Island, southern Japan. The microbial communities in mud volcano sediments were generally distinct from those in the overlying seawaters and in the well-stratified Pacific margin sediments collected at the Peru Margin, the Juan de Fuca Ridge flank off Oregon, and offshore of Shimokita Peninsula, northeastern Japan. Nevertheless, in-depth analysis of different taxonomic groups at the sub-species level revealed that the taxon affiliated with Atribacteria, heterotrophic anaerobic bacteria that typically occur in organic-rich anoxic subseafloor sediments, were commonly found not only in SMV sediments but also in the overlying seawater. We designed a new oligonucleotide probe for detecting Atribacteria using the catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). CARD-FISH, digital PCR and sequencing analysis of 16S rRNA genes consistently showed that Atribacteria are abundant in the methane plumes of the two SMVs (0.58 and 1.5 × 104 cells/mL, respectively) but not in surrounding waters, suggesting that microbial cells in subseafloor sediments are dispersed as "deep-biosphere seeds" into the ocean. These findings may have important implications for the microbial transmigration between the deep subseafloor biosphere and the hydrosphere.

4.
Anal Sci ; 32(4): 437-42, 2016.
Article in English | MEDLINE | ID: mdl-27063717

ABSTRACT

A gas-tight pH measurement is needed to monitor water chemistry at a CO2 geological storage site. In the CO2 reservoirs, the temperature and pressure are generally more than the critical point of CO2 (31.2°C and 7.38 MPa). In this study, a colorimetric pH measurement method was examined up to 20 MPa for future application to various CO2 reservoirs. A mixture of two color indicators, bromocresol green (BCG) and metacresol purple (mCP), was considered to be a suitable measurement method between pH 3 and 9. The uncertainty up to 20 MPa was less than 0.12 pH units without any correction of pressure effects. We demonstrated a pH measurement of formation water at the Nagaoka CO2 post-injection site. The pH measurement was successfully accomplished under a high-pressure condition (ca. 11 MPa) and without degassing of CO2.

5.
Article in English | MEDLINE | ID: mdl-26431911

ABSTRACT

Hydrothermal vent environmental conditions are characterized by high sulfide concentrations, fluctuating osmolality, and irregular temperature elevations caused by vent effluents. These parameters represent potential stressors for organisms that inhabit the area around hydrothermal vents. Here, we aimed to obtain a better understanding of the adaptation mechanisms of marine species to hydrothermal vent environments. Specifically, we examined the effect of sulfide, osmolality, and thermal stress on the expression of taurine transporter (TAUT) mRNA in the gill of the deep-sea mussel Bathymodiolus septemdierum, which is a dominant species around hydrothermal vent sites. We analyzed TAUT mRNA levels by quantitative real-time polymerase chain reaction (PCR) in the gill of mussels exposed to sulfide (0.1 or 1mg/L Na2S·9H2O), hyper- (115% seawater) and hypo- (97.5%, 95.5%, and 85% seawater) osmotic conditions, and thermal stresses (12°C and 20°C) for 24 and 48h. The results showed that mussels exposed to relatively low levels of sulfide (0.1mg/L) and moderate heat stress (12°C) exhibited higher TAUT mRNA levels than the control. Although hyper- and hypo-osmotic stress did not significantly change TAUT mRNA levels, slight induction was observed in mussels exposed to low osmolality. Our results indicate that TAUT is involved in the coping mechanism of mussels to various hydrothermal vent stresses.


Subject(s)
Gills/metabolism , Heat-Shock Response/drug effects , Hydrothermal Vents , Membrane Glycoproteins/genetics , Membrane Transport Proteins/genetics , Mytilidae/genetics , Osmotic Pressure/drug effects , Sulfides/pharmacology , Animals , Gills/drug effects , Heat-Shock Response/genetics , Membrane Glycoproteins/metabolism , Membrane Transport Proteins/metabolism , Mytilidae/drug effects , Mytilidae/physiology , Osmolar Concentration , RNA, Messenger/metabolism , Stress, Physiological/drug effects , Stress, Physiological/genetics , Temperature
6.
Anal Sci ; 31(8): 847-50, 2015.
Article in English | MEDLINE | ID: mdl-26256611

ABSTRACT

Under conditions where carbonate and oceanic parameters such as alkalinity (A(T)), salinity (Sp), and phosphate (P(T)) and silicate (SiT) concentrations cannot be obtained, the use of fixed values to calculate total pH (pHT) at 25°C was demonstrated. For temperatures of 20 - 30°C, these values caused a maximum error of ±0.001 in pHT. For temperatures of 0 - 40°C, using fixed values with correct SP values caused a maximum error of approximately +0.0021.

7.
Phys Chem Chem Phys ; 17(30): 19948-56, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26165394

ABSTRACT

The greatly enhanced oxidation ability of dilute aqueous nitric acid (0.10-2.0 mol L(-1)) containing bromide and iodide salts as well as chloride salts has been examined based on the dissolution kinetics of pure gold at 30-60 °C. It has been found that bromide salts are more effective than chloride salts in gaining the ability of dissolving gold in dilute aqueous nitric acid solution. At 60 °C, a piece of gold-wire (ca. 20 mg) is dissolved in 20 mL of as low as 0.10 mol L(-1) HNO3 solution containing 1.0-5.0 mol L(-1) NaBr and the dissolution rate constant, log(k/s(-1)), increases linearly (from -5.78 to -4.52) with the increasing NaBr concentration. The addition of organic solvents, such as acetonitrile and acetic acid, causes acceleration of gold dissolution in LiBr and NaBr solutions. With increasing MeCN contents, for instance, the log(k/s(-1)) value of 0.10 mol L(-1) HNO3 solution containing 2.0 mol L(-1) NaBr increases linearly from -5.30 to -4.61 at 30% (v/v) MeCN. The bromide salts affect the gold dissolution rate constant in the order of KBr < NaBr < LiBr < CaBr2. With increasing NaI concentration (0.20-3.0 mol L(-1)), some acceleration in log(k/s(-1)) of 0.50 or 1.0 mol L(-1) HNO3 solution has been observed; however, the slope of acceleration as the function of NaI concentration is much smaller than that of NaCl or NaBr. The gold dissolution ability has been examined also for nitrous acid containing chloride and bromide ions at 35 °C. The NaNO2 solution containing twice or more amounts of HX (X = Cl, Br) gives the maximum efficiency for gold dissolution, according to the log(k/s(-1)) values of the mixed solutions of NaNO2 (0.10-2.0 mol L(-1)) and HX of various concentrations. The influence of oxidation by dilute nitric and nitrous acids on the gold dissolution is discussed from the standpoint of the redox potentials in "modified" aqueous solutions and not of the changes in the activity coefficients of ions.

8.
Carbohydr Polym ; 115: 78-87, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25439871

ABSTRACT

This study investigated the dielectric properties of sodium alginates and carrageenans in water at frequencies between 100 MHz and 20 GHz in regard to water-hydrocolloid interactions via acidic functional groups. Both sodium alginates and carrageenans showed conduction loss at lower frequencies and dielectric loss at higher frequencies. Reduction and desulfation of sodium alginates and carrageenans, which decreased the numbers of acidic functional groups, decreased their conduction loss. In addition, H(+)-form carrageenans showed the highest ionic conduction. Correlational analysis of dielectric properties and related physical parameters showed that the loss tangent (tanδ) of the hydrocolloid solution was determined by the conductivity of the aqueous solution. Especially at pH below 2, strong H(+) conduction was associated with high tanδ probably due to the Grotthuss mechanism. The molecular dynamics of free water and H(+), viscosity conditions were also suggested to be associated with dielectric property of water-hydrocolloid system.


Subject(s)
Acids/chemistry , Alginates/chemistry , Carrageenan/chemistry , Water/chemistry , Electric Impedance , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Viscosity
9.
Anal Sci ; 30(12): 1135-41, 2014.
Article in English | MEDLINE | ID: mdl-25492462

ABSTRACT

A colorimetric pH measurement of seawater samples using a light source comprising a three light-emitting diodes (TLED) detector and meta-cresol purple (mCP) as an indicator was investigated. The molar absorption ratios (e1, e2, and e3/e2) for mCP using the TLED detector at 25°C were determined to be 0, 1.9994, and 0.1010, respectively. Next, the pH values of 2-amino-2-hydroxymethyl-1,3-propanediol (TRIS) and 2-aminopyride (AMP) seawater buffers were determined. Notably, the raw pH of TRIS buffer (∼8.1) agreed with the reference value, while that for the AMP buffer (∼6.8) had an error of +0.004 due to the small absorption ratio (R) and being out of the lower adequate pH range (> 7.2) for mCP. pHT measurements obtained for seawater samples using the present colorimetric method agreed with those obtained using a glass electrode. These results demonstrate that this low-cost TLED detection system with a short cell length, 5 cm, can be used for seawater pHT analysis.


Subject(s)
Light , Seawater/analysis , Temperature , Calibration , Colorimetry , Hydrogen-Ion Concentration , Seawater/chemistry
10.
Front Microbiol ; 4: 85, 2013.
Article in English | MEDLINE | ID: mdl-23626587

ABSTRACT

To directly access the sub-seafloor microbial communities, seafloor drilling has been done in a deep-sea hydrothermal field of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific. In the present study, crustal fluids were collected from the boreholes, and the bacterial and archaeal communities in the fluids were investigated by culture-independent molecular analysis based on 16S rRNA gene sequences. Bottom seawater, sands, rocks, sulfide mound, and chimneys were also collected around the boreholes and analyzed for comparisons. Comprehensive analysis revealed the characteristics of the microbial community composition in the crustal fluids. Phylotypes closely related to cultured species, e.g., Alteromonas, Halomonas, Marinobacter, were relatively abundant in some crustal fluid samples, whereas the phylotypes related to Pelagibacter and the SUP05-group were relatively abundant in the seawater samples. Phylotypes related to other uncultured environmental clones in Alphaproteobacteria and Gammaproteobacteria were relatively abundant in the sand, rock, sulfide mound, and chimney samples. Furthermore, comparative analysis with previous studies of the Suiyo Seamount crustal fluids indicates the change in the microbial community composition for 3 years. Our results provide novel insights into the characteristics of the microbial communities in crustal fluids beneath a deep-sea hydrothermal field.

11.
Anal Sci ; 29(1): 9-13, 2013.
Article in English | MEDLINE | ID: mdl-23303077

ABSTRACT

We developed a system for measuring the total dissolved inorganic carbon (DIC) concentrations in interstitial water and hydrothermal fluid, which are hard to obtain in large volumes. The system requires a sample volume of only 500 µL, and it takes only 150 s per one sample. The detection limit of this system was estimated to be 66.6 µmol/kg with repeated analysis of CO(2)-free ultrapure water (n = 9). The precision of this nondispersive infrared (NDIR) system was ±3.1% of the relative standard deviations (2σ) by repeated CRM batch 104 (n = 10). This result is much larger than the required precision for oceanographic studies, but is comparable to a previous result of interstitial water analysis. An on-site trial showed a significant DIC enrichment in interstitial water of hydrothermally altered sediment, and is considered to occur by the mixing of hydrothermal fluid. This procedure will achieve carbon dioxide flux calculations from hydrothermal activities, and will bring a more accurate feature on the global carbon cycle.

12.
PLoS One ; 7(3): e32965, 2012.
Article in English | MEDLINE | ID: mdl-22431990

ABSTRACT

Indian Ocean hydrothermal vents are believed to represent a novel biogeographic province, and are host to many novel genera and families of animals, potentially indigenous to Indian Ocean hydrothermal systems. In particular, since its discovery in 2001, much attention has been paid to a so-called 'scaly-foot' gastropod because of its unique iron-sulfide-coated dermal sclerites and the chemosynthetic symbioses in its various tissues. Despite increasing interest in the faunal assemblages at Indian Ocean hydrothermal vents, only two hydrothermal vent fields have been investigated in the Indian Ocean. Here we report two newly discovered hydrothermal vent fields, the Dodo and Solitaire fields, which are located in the Central Indian Ridge (CIR) segments 16 and 15, respectively. Chemosynthetic faunal communities at the Dodo field are emaciated in size and composition. In contrast, at the Solitaire field, we observed faunal communities that potentially contained almost all genera found at CIR hydrothermal environments to date, and even identified previously unreported taxa. Moreover, a new morphotype of 'scaly-foot' gastropod has been found at the Solitaire field. The newly discovered 'scaly-foot' gastropod has similar morphological and anatomical features to the previously reported type that inhabits the Kairei field, and both types of 'scaly-foot' gastropods genetically belong to the same species according to analyses of their COI gene and nuclear SSU rRNA gene sequences. However, the new morphotype completely lacks an iron-sulfide coating on the sclerites, which had been believed to be a novel feature restricted to 'scaly-foot' gastropods. Our new findings at the two newly discovered hydrothermal vent sites provide important insights into the biodiversity and biogeography of vent-endemic ecosystems in the Indian Ocean.


Subject(s)
Biodiversity , Hydrothermal Vents , Animals , Body Size , Dermis/metabolism , Gastropoda/anatomy & histology , Gastropoda/ultrastructure , Geography , Indian Ocean , Iron/metabolism , Molecular Sequence Data , Rheology , Stress, Mechanical , Sulfides/metabolism
13.
Sci Rep ; 2: 270, 2012.
Article in English | MEDLINE | ID: mdl-22355782

ABSTRACT

The impacts of the M9.0 Tohoku Earthquake on deep-sea environment were investigated 36 and 98 days after the event. The light transmission anomaly in the deep-sea water after 36 days became atypically greater (∼35%) and more extensive (thickness ∼1500 m) near the trench axis owing to the turbulent diffusion of fresh seafloor sediment, coordinated with potential seafloor displacement. In addition to the chemical influx associated with sediment diffusion, an influx of (13)C-enriched methane from the deep sub-seafloor reservoirs was estimated. This isotopically unusual methane influx was possibly triggered by the earthquake and its aftershocks that subsequently induced changes in the sub-seafloor hydrogeologic structures. The whole prokaryotic biomass and the development of specific phylotypes in the deep-sea microbial communities could rise and fall at 36 and 98 days, respectively, after the event. We may capture the snap shots of post-earthquake disturbance in deep-sea chemistry and microbial community responses.

14.
Anal Sci ; 27(2): 183-6, 2011.
Article in English | MEDLINE | ID: mdl-21321442

ABSTRACT

A new chemiluminescence method is proposed for the determination of sulfide in seawater based on the chemiluminescence reaction between sulfide and an acidic permanganate solution. 3-Cyclohexylaminopropanesulfonic acid was used as a chemiluminescence enhancer. By use of this method, 1-150 µM of sulfide could be determined in artificial seawater. The limit of detection was 0.17 µM sulfide. We investigated the effects of salinity, water temperature, and interfering chemicals such as heavy-metal ions and organic matter. In addition, natural seawater spiked with sulfide was analyzed. The results showed that the CL method could be applied to a deep-sea sulfide analyzer.

15.
Anal Sci ; 26(6): 709-13, 2010.
Article in English | MEDLINE | ID: mdl-20543505

ABSTRACT

The open-cell titration of seawater was studied for alkalinity measurements by colorimetry. 1) The colorimetric pH of free hydrogen ion concentration, pH(F(ind)), was calculated from the ratio of the absorbances at 436 and 590 nm (R = (590nm)A/(436nm)A), along with the molar absorption coefficient ratios (e(1), e(2) and e(3)/e(2)) and a tentative acid dissociation constant value (pK(a(2))). 2) The perturbation of hydrogen ion was evaluated from the change in titration mass (Deltam). The total hydrogen ion concentration at m + Deltam, pH(T(at m+Deltam)), was calculated using pH(F(ind)) for a mass m and constants for sulfate (S(T)) and fluoride (F(T)). 3) The alkalinity (A(T)) was computed from the titrant mass (m + Deltam) and the corresponding pH(T(at m+Deltam)) through a non-linear least-squares approach using the pK(a(2)) value as a variable parameter. Seawater sample at 2000 m depth from the West Pacific was analyzed. The resulting A(T) (2420.92 +/- 3.35 micromol kg(-1)) was in good agreement with the A(T) measured by potentiometric electric force (2420.46 +/- 1.54 micromol kg(-1)). The resulting pK(a(2)) was 3.7037, in close proximity to that reported by King et al. (pK(a(2)) = 3.695).

16.
Anal Chim Acta ; 594(1): 52-60, 2007 Jun 26.
Article in English | MEDLINE | ID: mdl-17560385

ABSTRACT

A new technique for the determination of suspended particulate trace metals (P-metals >0.2 microm), such as Co, Ni, Cu, Zn, Cd and Pb, in open ocean seawater has been developed by using microwave digestion coupled with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS). Suspended particulate matter (SPM) was collected from 500 mL of seawater on a Nuclepore filter (0.2 microm) using a closed filtration system. Both the SPM and filter were completely dissolved by microwave digestion. Reagents for the digestion were evaporated using a clean evaporation system, and the metals were redissolved in 0.8 M HNO3. The solution was diluted with buffer solution to give pH 5.0 and the metals were determined by FI-ICP-MS using a chelating adsorbent of 8-hydroxyquinoline immobilized on fluorinated metal alkoxide glass (MAF-8HQ). The procedure blanks with a filter were found to be 0.048+/-0.008, 10.3+/-0.3, 0.27+/-0.05, 3.3+/-1.8, 0.02+/-0.03 and 0.85+/-0.09 ng L(-1) for Co, Ni, Cu, Zn, Cd and Pb, respectively (n=14). Detection limits defined as 3 times the standard deviation of the blanks were 0.023, 0.90, 0.14, 5.3, 0.078 and 0.28 ng L(-1) for Co, Ni, Cu, Zn, Cd and Pb, respectively. Accuracy was evaluated using certified reference materials of chlorella (NES CRM No. 3) and marine sediment (HISS-1). The method was applied to the determination of vertical distributions for P-Co, Ni, Cu, Zn, Cd and Pb in the Western North Pacific.


Subject(s)
Filtration/methods , Mass Spectrometry/methods , Metals/analysis , Microwaves , Seawater/chemistry , Trace Elements/analysis
17.
Proc Jpn Acad Ser B Phys Biol Sci ; 83(7): 199-204, 2007 Nov.
Article in English | MEDLINE | ID: mdl-24367146

ABSTRACT

We successfully deployed an in situ automatic chemical analyzer sensitive to manganese (Mn) in seawater for a period of 81 days for the first time on the deep seafloor of Sagami Bay along a convergent plate boundary south of Japan. The in situ Mn analyzer (GAMOS-IV) was connected to a submarine cable as a means to supply power and to relay real time data. During the observation period from April 5 till June 25, 2006, the amount of measured Mn was seen to increase abruptly up to 10 times that of the background level only on April 21, probably triggered by a M5.8 earthquake which occurred ∼7 km south-southwest of the observation site. This study demonstrates the suitability of submarine cables for the long-term geochemical monitoring of deep sea environments.

18.
Anal Chem ; 74(19): 5154-6, 2002 Oct 01.
Article in English | MEDLINE | ID: mdl-12380843

ABSTRACT

Urocanic acid (UCA) is known to be synthesized as the trans isomer (trans-UCA) in the skin, and trans-UCA is transformed by UV light to the cis isomer (cis-UCA), which may be involved in photoimmunosuppression. An electrochemical method has been developed for the measurement of the concentration and isomer ratio of UCA. A heme peptide-modified electrode (HP electrode) reduces hydrogen peroxide at +150 mV vs Ag/AgCl, and the reduction current is inhibited by UCA. Since cis-UCA is a stronger inhibitor than trans-UCA, irradiation of a sample solution with UV light increases the percent inhibition. The concentration and isomer ratio of UCA in the sample solution can be estimated from the values of percent inhibition before and after the UV irradiation.


Subject(s)
Biosensing Techniques , Urocanic Acid/analysis , Electrochemistry , Electrodes , Hydrogen Peroxide/chemistry , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...