Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 24(7): 7566-74, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-27137045

ABSTRACT

We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10-3 with the output pulse energy 3.6 µJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 µJ.

2.
J Phys Chem A ; 117(45): 11441-8, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24111914

ABSTRACT

We performed ultrafast pump-probe spectroscopy of J-aggregates of 3,3'-disulfopropyl-5,5'-dichloro-9-ethyl thiacarbocyanine triethylammonium (THIATS), one of the most typical cyanine dyes, and detected excited molecular vibrations, using a sub-10 fs pulse laser. The time-resolved two-dimensional difference absorption (ΔA) spectra are observed between -314 and 1267 fs. By performing the Fourier transform and spectrogram analysis, vibrational modes in THIATS are observed at 285, 485, 555, 824, and 1633 cm(-1) and there was a modulation of the vibrational frequencies around 1633 cm(-1) which depend on the delay time, respectively. By the analysis of the modulation, energy flow is found to take place from other modes to the 1633 cm(-1) mode through the low frequency mode with ∼50 cm(-1). Also, by fitting the real-time traces of ΔA with the sum of two exponential functions and a constant term, the average lifetimes of three electronically excited states were found to be τ1 = 52 ± 5 fs and τ2 = 540 ± 78 fs. By performing single-exponential fitting around the stationary absorption peak at 1.990 eV, in the negative time range, the electronic dephasing time, T2(ele), is determined to be 18.30 fs.

3.
Appl Opt ; 51(26): 6403-10, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-22968281

ABSTRACT

In some applications of ultrafast spectroscopy that employ sub-10-fs pulses, the pulse spectrum and power need to be stable for several tens of minutes. In this study, we generate sub-10-fs deep-ultraviolet (DUV) pulses with such stabilities by chirped-pulse four-wave mixing. A power fluctuation of less than 3% rms was realized by employing stabilization schemes that employ a power stabilizer. The pulses generated in this study have been applied to transient absorption spectroscopy in the DUV with a sub-10-fs time resolution [Phys. Chem. Chem. Phys.14, 6200 (2012).10.1039/c2cp23649d]. This sub-10-fs DUV source has a similar performance to widely used noncollinear optical parametric amplifiers.

4.
Phys Chem Chem Phys ; 14(27): 9696-701, 2012 Jul 21.
Article in English | MEDLINE | ID: mdl-22692395

ABSTRACT

Allyl phenyl ether has an absorption band in the ultraviolet region (λ < 400 nm); therefore, irradiation with few-optical-cycle ultraviolet pulses (λ = 360-440 nm) causes a transition to the ultraviolet band, which leads to an electronic state and a photo-Claisen rearrangement (radical reaction) in the electronic excited state. However, the reaction scheme of allyl phenyl ether under irradiation with few-optical-cycle visible pulses (λ = 525-725 nm) was determined to be same as that of the thermal Claisen rearrangement ([3,3]-sigmatropic rearrangement), which is symmetry-allowed in the electronic ground state. Photo-excitation with few-optical cycle visible pulses below the absorption band induces a photo-impulsive reaction in the electronic ground state without electronic excitation, of which the trigger scheme is different from that of photoreaction or thermal-reaction. The photo-impulsive reaction in the electronic ground state is highly possible as a novel reaction scheme.

5.
Int J Oncol ; 38(4): 903-10, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21286664

ABSTRACT

Disruption of the normal pattern of parental origin-specific gene expression is referred to as loss of imprinting (LOI), which is common in various cancers. To investigate a possible role of LOI in the early stage of human cell transformation, we studied LOI in 18 human fibroblast cell lines immortalized spontaneously, by viral oncogenes, by chemical or physical carcinogens, or by infection with a retrovirus vector encoding the human telomerase catalytic subunit, hTERT cDNA. LOI was observed in all the 18 immortal cell lines. The gene most commonly exhibiting LOI was NDN which displayed LOI in 15 of the 18 cell lines (83%). The other genes exhibiting LOI at high frequencies were PEG3 (50%), MAGE-L2 (61%) and ZNF 127 (50%). Expression of NDN that was lost in the immortal cell lines was restored by treatment with 5-aza-2'-deoxycytidine. The ratio of histone H3 lysine 9 methylation to histone H3 lysine 4 methylation of the chromatin containing the NDN promoter in the immortal WI-38VA13 cells was greater than that in the parental cells, suggesting chromatin structure-mediated regulation of NDN expression. We previously demonstrated that inactivation of the p16INK4a/pRb pathway is necessary for immortalization of human cells. Human fibroblasts in the pre-crisis phase and cells with an extended lifespan that eventually senesce, both of which have the normal p16INK4a/pRb pathway, did not show LOI at any imprinted gene examined. Although it is not clear if LOI plays a causal role in immortalization of human cells or is merely coincidental, these findings indicate a possible involvement of LOI in immortalization of human cells or a common mechanism involved in both processes.


Subject(s)
Cell Transformation, Neoplastic/genetics , Fibroblasts/metabolism , Genomic Imprinting , Cell Line, Transformed , DNA Methylation , Female , Gene Expression Profiling , Histones/metabolism , Humans , Male , Methylation , Methyltransferases/metabolism , Polymorphism, Genetic , Promoter Regions, Genetic , Transcription, Genetic
6.
Opt Lett ; 36(2): 226-8, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21263508

ABSTRACT

The visible second harmonic of the idler output from a noncollinear optical parametric amplifier was compressed using adaptive dispersion control with a deformable mirror. The amplifier was pumped by and seeded in the signal path by a common 400 nm second-harmonic pulse from a Ti:sapphire regenerative amplifier. Thus, both the idler output and the second harmonic of the idler were passively carrier-envelope phase stabilized. The shortest pulse duration achieved was below 3 fs.

7.
Opt Express ; 18(20): 20645-50, 2010 Sep 27.
Article in English | MEDLINE | ID: mdl-20940959

ABSTRACT

Clean 7.5 fs pulses at 400 nm with less than 3% energy in tiny satellite pulses were obtained by spectral broadening in a hollow fiber and dispersive compensating using a prism pair together with a deformable mirror system. As an example, this stable and clean pulse was used to study the ultrafast pump-probe spectroscopy of photoactive yellow protein. Moreover, the self-diffraction signal shows a smoothed and broadened laser spectrum and is expected to have a further clean laser pulse, which makes it more useful in the ultrafast pump-probe spectroscopy in the future.


Subject(s)
Optics and Photonics , Spectrophotometry, Ultraviolet/instrumentation , Aluminum/chemistry , Bacterial Proteins/chemistry , Computer-Aided Design/instrumentation , Equipment Design/instrumentation , Fourier Analysis , Lasers , Light , Photoreceptors, Microbial/chemistry , Signal Processing, Computer-Assisted/instrumentation , Spectrophotometry, Ultraviolet/methods , Time Factors
8.
Opt Express ; 18(21): 22245-54, 2010 Oct 11.
Article in English | MEDLINE | ID: mdl-20941126

ABSTRACT

We demonstrated for the first time the application of a self-diffraction (SD) process in a bulk Kerr medium to improve the temporal, spectral, and spatial qualities of femtosecond laser pulses. A proof-of-principle experiment succeeded in improving the temporal contrast of a femtosecond pulse by four orders of magnitude even in the picosecond region using a 0.5-mm-thick fused silica glass plate by this technique. The energy conversion efficiency from the incident pulses to the two first-order SD signals is about 12%. By the SD process, a laser pulse with smoother spectral shape, higher beam quality, and shorter pulse duration than those of the input pulse was generated. This technique is expected to be used to design background-free petawatt laser system in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...