Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 17989, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504254

ABSTRACT

Prevascularized artificial three-dimensional (3D) tissues are effective biomaterials for regenerative medicine. We have previously established a scaffold-free 3D artificial vascular tissue from normal human dermal fibroblasts (NHDFs) and umbilical vein-derived endothelial cells (HUVECs) by layer-by-layer cell coating technique. In this study, we constructed an artificial vascular tissue constructed by human adipose tissue-derived stromal cells (hASCs) and HUVECs (ASCVT) by a modified technique with cryopreservation. ASCVT showed a higher thickness with more dense vascular networks than the 3D tissue based on NHDFs. Correspondingly, 3D-cultured ASCs showed higher expression of several angiogenesis-related factors, including vascular endothelial growth factor-A and hepatic growth factor, compared to that of NHDFs. Moreover, perivascular cells in ASCVT were detected by pericyte markers, suggesting the differentiation of hASCs into pericyte-like cells. Subcutaneous transplantation of ASCVTs to nude mice resulted in an engraftment with anastomosis of host's vascular structures at 2 weeks after operation. In the engrafted tissue, the vascular network was surrounded by mural-like structure-forming hASCs, in which some parts developed to form vein-like structures at 4 weeks, suggesting the generation of functional vessel networks. These results demonstrated that cryopreserved human cells, including hASCs, could be used directly to construct the artificial transplantable tissue for regenerative medicine.


Subject(s)
Cryopreservation/methods , Human Umbilical Vein Endothelial Cells , Mesenchymal Stem Cells , Tissue Engineering/methods , Transplants/cytology , Animals , Cells, Cultured , Female , Fibroblasts , Green Fluorescent Proteins/genetics , Humans , Infant, Newborn , Mice , Mice, Inbred BALB C , Mice, Nude , Models, Animal , Regenerative Medicine/methods , Tissue Scaffolds , Tissue Transplantation/methods , Transfection , Treatment Outcome
2.
Biomaterials ; 179: 144-155, 2018 10.
Article in English | MEDLINE | ID: mdl-29986232

ABSTRACT

Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours because they have no vasculature. Furthermore, there are major differences in cancer behaviour between human and animal experiments. Here, we show the construction of 3D blood/lymph-vascularized human stromal tissues that can be combined with cancer cells to mimic dynamic metastasis for real-time throughput screening of secreted proteinases. We validated this tool using three human carcinoma cell types that are known to invade blood/lymph vessels and promote angiogenesis. These cell types exhibited characteristic haematogenous/lymphogenous metastasis and tumour angiogenesis properties. Importantly, these carcinoma cells selectively secreted different matrix metalloproteinases depending on their metastasis stage and target vasculature, suggesting the possibility of developing drugs that can target each secreted proteinase. We conclude that the 3D tissue tool will be a powerful throughput system for predicting cancer cell responses and time-dependent secretion of molecules in preclinical assays.


Subject(s)
Neovascularization, Pathologic/metabolism , Animals , Extracellular Matrix/chemistry , Humans , Nanostructures/chemistry , Neoplasm Metastasis/pathology , Tumor Microenvironment/physiology
3.
J Tissue Eng Regen Med ; 11(4): 1303-1307, 2017 04.
Article in English | MEDLINE | ID: mdl-26563424

ABSTRACT

We have established a novel three-dimensional (3D) tissue-constructing technique, referred to as the 'cell-accumulation method', which is based on the self-assembly of cultured human cells. In this technique, cells are coated with fibronectin and gelatin to construct extracellular matrix (ECM) nanofilms and cultured to form multi-layers in vitro. By using this method, we have successfully fabricated artificial tissues with vascular networks constructed by co-cultivation of human umbilical vein-derived vascular endothelial cells between multi-layers of normal human dermal fibroblasts. In this study, to assess these engineered vascular tissues as therapeutic implants, we transplanted the 3D human tissues with microvascular networks, fabricated based on the cell-accumulation method, onto the back skin of nude mice. After the transplantation, we found vascular networks with perfusion of blood in the transplanted graft. At the boundary between host and implanted tissue, connectivity between murine and human vessels was found. Transmission electron microscopy of the implanted artificial vascular tubules demonstrated the ultrastructural features of blood capillaries. Moreover, maturation of the vascular tissues after transplantation was shown by the presence of pericyte-like cells and abundant collagen fibrils in the ECM surrounding the vasculature. These results demonstrated that artificial human vascular tissues constructed by our method were engrafted and matured in animal skin. In addition, the implanted artificial human vascular networks were connected with the host circulatory system by anastomosis. This method is an attractive technique for engineering prevascularized artificial tissues for transplantation. Copyright © 2015 John Wiley & Sons, Ltd.


Subject(s)
Artificial Organs , Blood Vessels/transplantation , Extracellular Matrix/metabolism , Nanoparticles/chemistry , Tissue Engineering/methods , Animals , Blood Vessels/ultrastructure , Humans , Mice
4.
Cell Tissue Res ; 362(3): 529-40, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26104134

ABSTRACT

Some free-living flatworms in the phylum Platyhelminthes possess strong regenerative capability that depends on putative pluripotent stem cells known as neoblasts. These neoblasts are defined based on several criteria, including their proliferative capacity and the presence of cellular components known as chromatoid bodies. Polyclads, which are marine flatworms, have the potential to be a good model system for stem cell research, yet little information is available regarding neoblasts and regeneration. In this study, transmission electron microscopy and immunostaining analyses, using antibodies against phospho-histone H3 and BrdU, were used to identify two populations of neoblasts in the polyclad Notoplana humilis: mesodermal neoblasts (located in the mesenchymal space) and gastrodermal neoblasts (located within the intestine, where granular club cells and phagocytic cells are also located). Light and electron microscopic analyses also suggested that phagocytic cells and mesodermal/gastrodermal neoblasts, but not granular club cells, migrated into blastemas and remodeled the intestine during regeneration. Therefore, we suggest that, in polyclads, intestinal regeneration is accomplished by mechanisms underlying both morphallaxis (remodeling of pre-existing tissues) and epimorphosis (de novo tissue formation derived from mesodermal/gastrodermal neoblasts). Based on the assumption that gastrodermal neoblasts, which are derived from mesodermal neoblasts, are intestinal stem cells, we propose a model to study intestinal regeneration.


Subject(s)
Intestinal Mucosa/cytology , Intestinal Mucosa/ultrastructure , Mesoderm/cytology , Planarians/cytology , Planarians/ultrastructure , Regeneration , Animals , Cell Differentiation , Cell Movement , Cell Proliferation , Cell Shape , Epithelial Cells/cytology , Epithelial Cells/ultrastructure , Intestinal Mucosa/anatomy & histology , Mesoderm/ultrastructure , Microscopy, Electron , Mitosis , Staining and Labeling
5.
Zoolog Sci ; 31(12): 810-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25483793

ABSTRACT

The marine gastropod Onchidium has a multiple photoreceptive system consisting of stalk eyes, dorsal eyes, photosensitive neurons, and extraocular dermal photoreceptor cells (DPCs). The DPCs were widespread all over the dorsal mantle and distributed singly or in groups in the dermis, but were not discernible by the naked eye. The DPC was oval in shape and large in size, and characterized by features specific to gastropod photoreceptor cells such as massive microvilli, photic vesicles, and a depolarized response. DPC-17, one of a group of 19 DPCs, was examined on serial semi-thin sections of 0.4 µm in thickness with a high-voltage transmission electron microscope (HVTEM). The axon emerged specifically from the lateral side between the distal microvillous portion and proximal cytoplasm, travelled through the connective tissue, and joined a small nerve bundle (NB). Two types of supportive cells were found along the length of the axon. The first type was a covering cell (CC) surrounding the surface of the DPC body and continuing onward to the axon sheath. DPC-17 was covered by 11 CCs, while the larger DPC-6 was only covered by four CCs. The second type was a sheath cell (ShC) wrapping the surface of the small NB where the axon of the DPC merged with undefined nerve fibers. The axon extending directly from DPC-17 was reconstructed three-dimensionally (3D) using DeltaViewer software. The 3D-reconstructed image of the sheath of the axon and the CC demonstrated the continuity between the two structures, especially when the image was rotated using DeltaViewer.


Subject(s)
Axons , Gastropoda/anatomy & histology , Gastropoda/physiology , Photoreceptor Cells, Invertebrate/cytology , Animals , Photoreceptor Cells, Invertebrate/physiology
6.
Microscopy (Oxf) ; 63(3): 219-26, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24549188

ABSTRACT

Cell accumulation technique is an extracellular matrix (ECM) nanofilm-based tissue-constructing method that enables formation of multilayered hybrid culture tissues. In this method, ECM-nanofilm is constructed using layer-by-layer assembly of fibronectin and gelatin on culture cells. The ECM-nanofilm promotes cell-to-cell interaction; then the three-dimensional (3D) multilayered tissue can be constructed with morphological change of the cells mimicking living tissues. By using this method, we have successfully produced tubular networks of human umbilical venous endothelial cells (HUVECs) and human dermal lymphatic endothelial cells (HDLECs) in 3D multilayered normal human dermal fibroblasts (NHDFs). This study demonstrated morphological characteristics of the vascular networks in the engineered tissues by using light and electron microscopy. In light microscopy, HUVECs and HDLECs formed luminal structures such as native blood and lymphatic capillaries, respectively. Electron microscopy showed distinct ultrastructural aspects of the vasculature of HUVECs or HDLECs with intermediated NHDFs and abundant ECM. The vasculature constructed by HUVECs exhibited structures similar to native blood capillaries, involving overlapping endothelial connections with adherens junctions, abundant vesicles in the endothelial cells and basement membrane-like structure. The detection of laminin around HUVEC-constructed vessels supported the presence of perivascular basal lamina. The vasculature constructed by HDLECs showed some ultrastructural characteristics similar to those of native lymphatic capillaries such as irregular vascular shape, loose adhesive connection and gap formation between endothelial cells. In conclusion, our novel vascular network models fabricated by the cell accumulation technique provide highly organized blood and lymphatic capillary networks mimicking the vasculatures in vivo.


Subject(s)
Blood Vessels/ultrastructure , Extracellular Matrix/ultrastructure , Lymphatic Vessels/ultrastructure , Nanostructures , Tissue Culture Techniques/methods , Blood Vessels/cytology , Capillaries/cytology , Capillaries/ultrastructure , Cell Communication , Humans , Lymphatic Vessels/cytology , Microscopy , Microscopy, Electron, Transmission , Tissue Engineering/methods
7.
Rev Sci Instrum ; 84(2): 024702, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23464233

ABSTRACT

In this study of corona streamer discharges from an impulse generator using a dc power supply, the relationship of the discharge time-lag with the dc bias voltage between the sphere-to-needle electrodes under atmospheric conditions is investigated. Devices utilizing corona discharges have been used to purify air or water, destroy bacteria, and to remove undesirable substances, and in order to achieve fast response times and high power efficiencies in such devices, it is important to minimize the time-lag of the corona discharge. Our experimental results show that (a) the discharge path of a negatively biased needle electrode will be straighter than that of a positively biased needle and (b) the discharge threshold voltage in both the positive and the negative needle electrodes is nearly equal to 33 kV. By expressing the discharge voltage as a power function of time-lag, the extent of corona generation can be quantitatively specified using the exponent of this power function. The observed behavior of a corona streamer discharge between the negative spherical and the positive needle electrodes indicates that the largest power exponent is associated with the shortest time-lag, owing to the reduction in the statistical time-lag in the absence of a formative time-lag.

8.
Rev Sci Instrum ; 82(12): 123502, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22225214

ABSTRACT

For atmospheric streamer discharges using a lightning impulse generator, we demonstrate a method of determining the plasma impedance in a streamer region by analyzing the periodic attenuated discharge waveforms having high-frequency components. When the streamer region in the plasma can be treated as an equivalent series circuit model including resistance and inductance elements, the regression waveforms obtained by reducing and smoothing the discharge waveforms are analyzed in the equivalent circuit. We found that the streamer resistance increased exponentially with time after the discharge, whereas the streamer inductance and series impedance were constant at 4.0 Ω for longer than the first period of the discharge waveforms. Moreover, the slope of the regression curve increases more rapidly for the positive streamer resistance than for the negative resistance. Finally, the absolute values of the streamer impedance versus time were 3.3-19 Ω and 3.5-9.0 Ω for positive and negative discharges, respectively.


Subject(s)
Air , Dielectric Spectroscopy/methods , Plasma Gases/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...