Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem ; 23(9): 2247-60, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25801152

ABSTRACT

Mps1, also known as TTK, is a dual-specificity kinase that regulates the spindle assembly check point. Increased expression levels of Mps1 are observed in cancer cells, and the expression levels correlate well with tumor grade. Such evidence points to selective inhibition of Mps1 as an attractive strategy for cancer therapeutics. Starting from an aminopyridine-based lead 3a that binds to a flipped-peptide conformation at the hinge region in Mps1, elaboration of the aminopyridine scaffold at the 2- and 6-positions led to the discovery of 19c that exhibited no significant inhibition for 287 kinases as well as improved cellular Mps1 and antiproliferative activities in A549 lung carcinoma cells (cellular Mps1 IC50=5.3 nM, A549 IC50=26 nM). A clear correlation between cellular Mps1 and antiproliferative IC50 values indicated that the antiproliferative activity observed in A549 cells would be responsible for the cellular inhibition of Mps1. The X-ray structure of 19c in complex with Mps1 revealed that this compound retains the ability to bind to the peptide flip conformation. Finally, comparative analysis of the X-ray structures of 19c, a deamino analogue 33, and a known Mps1 inhibitor bound to Mps1 provided insights into the unique binding mode at the hinge region.


Subject(s)
Aminopyridines/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Aminopyridines/chemical synthesis , Aminopyridines/chemistry , Animals , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Drug Stability , Humans , Male , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Rats , Rats, Sprague-Dawley , Solubility , Structure-Activity Relationship , Tissue Distribution
2.
J Med Chem ; 58(4): 1760-75, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25625617

ABSTRACT

Monopolar spindle 1 (Mps1) is an attractive oncology target due to its high expression level in cancer cells as well as the correlation of its expression levels with histological grades of cancers. An imidazo[1,2-a]pyrazine 10a was identified during an HTS campaign. Although 10a exhibited good biochemical activity, its moderate cellular as well as antiproliferative activities needed to be improved. The cocrystal structure of an analogue of 10a guided our lead optimization to introduce substituents at the 6-position of the scaffold, giving the 6-aryl substituted 21b which had improved cellular activity but no oral bioavailability in rat. Property-based optimization at the 6-position and a scaffold change led to the discovery of the imidazo[1,2-b]pyridazine-based 27f, an extremely potent (cellular Mps1 IC50 = 0.70 nM, A549 IC50 = 6.0 nM), selective Mps1 inhibitor over 192 kinases, which could be orally administered and was active in vivo. This 27f demonstrated remarkable antiproliferative activity in the nanomolar range against various tissue cancer cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Drug Discovery , Imidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyridazines/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Pyridazines/chemical synthesis , Pyridazines/chemistry , Rats , Structure-Activity Relationship
3.
J Med Chem ; 56(11): 4343-56, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23634759

ABSTRACT

Monopolar spindle 1 (Mps1) is essential for centrosome duplication, the spindle assembly check point, and the maintenance of chromosomal instability. Mps1 is highly expressed in cancer cells, and its expression levels correlate with the histological grades of cancers. Thus, selective Mps1 inhibitors offer an attractive opportunity for the development of novel cancer therapies. To design novel Mps1 inhibitors, we utilized the pan-kinase inhibitor anthrapyrazolone (4, SP600125) and its crystal structure bound to JNK1. Our design efforts led to the identification of indazole-based lead 6 with an Mps1 IC50 value of 498 nM. Optimization of the 3- and 6-positions on the indazole core of 6 resulted in 23c with improved Mps1 activity (IC50 = 3.06 nM). Finally, application of structure-based design using the X-ray structure of 23d bound to Mps1 culminated in the discovery of 32a and 32b with improved potency for cellular Mps1 and A549 lung cancer cells. Moreover, 32a and 32b exhibited reasonable selectivities over 120 and 166 kinases, respectively.


Subject(s)
Anthracenes/chemical synthesis , Cell Cycle Proteins/antagonists & inhibitors , Imidazoles/chemical synthesis , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Anthracenes/pharmacokinetics , Anthracenes/pharmacology , Cell Cycle Proteins/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Humans , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Models, Molecular , Molecular Conformation , Protein Serine-Threonine Kinases/chemistry , Protein-Tyrosine Kinases/chemistry , Rats , Structure-Activity Relationship
4.
J Biochem ; 151(4): 447-55, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22418579

ABSTRACT

In mast and Th2 cells, hematopoietic prostaglandin (PG) D synthase (H-PGDS) catalyses the isomerization of PGH(2) in the presence of glutathione (GSH) to produce the allergic and inflammatory mediator PGD(2). We determined the X-ray structures of human H-PGDS inhibitor complexes with 1-amino-4-{4-[4-chloro-6-(2-sulpho-phenylamino)-[1,3,5]triazin-2-ylmethyl]-3-sulpho-phenylamino}-9,10-dioxo-9,10-dihydro-anthracene-2-sulphonic acid (Cibacron Blue) and 1-amino-4-(4-aminosulphonyl) phenyl-anthraquinone-2-sulphonic acid (APAS) at 2.0 Å resolution. When complexed with H-PGDS, Cibacron Blue had an IC(50) value of 40 nM and APAS 2.1 µM. The Cibacron Blue molecule was stabilized by four hydrogen bonds and π-π stacking between the anthraquinone ring and Trp104, the ceiling of the active site H-PGDS pocket. Among the four hydrogen bonds, the Cibacron Blue terminal sulphonic group directly interacted with conserved residues Lys112 and Lys198, which recognize the PGH(2) substrate α-chain. In contrast, the APAS anthraquinone ring was inverted to interact with Trp104, while its benzenesulphonic group penetrated the GSH-bound region at the bottom of the active site. Due to the lack of extended aromatic rings, APAS could not directly hydrogen bond with the two conserved lysine residues, thus decreasing the total number of hydrogen bond from four to one. These factors may contribute to the 50-fold difference in the IC(50) values obtained for the two inhibitors.


Subject(s)
Anthraquinones/chemistry , Enzyme Inhibitors/chemistry , Intramolecular Oxidoreductases/chemistry , Lipocalins/chemistry , Triazines/chemistry , Calcium/chemistry , Catalytic Domain , Coenzymes/chemistry , Crystallography, X-Ray , Glutathione/chemistry , Humans , Hydrogen Bonding , Intramolecular Oxidoreductases/antagonists & inhibitors , Kinetics , Lipocalins/antagonists & inhibitors , Models, Molecular , Protein Binding , Protein Structure, Quaternary , Protein Structure, Secondary
5.
ACS Med Chem Lett ; 3(7): 560-4, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-24900510

ABSTRACT

Monopolar spindle 1 (Mps1) is an attractive cancer drug target due to the important role that it plays in centrosome duplication, the spindle assembly checkpoint, and the maintenance of chromosomal stability. A design based on JNK inhibitors with an aminopyridine scaffold and subsequent modifications identified diaminopyridine 9 with an IC50 of 37 nM. The X-ray structure of 9 revealed that the Cys604 carbonyl group of the hinge region flips to form a hydrogen bond with the aniline NH group in 9. Further optimization of 9 led to 12 with improved cellular activity, suitable pharmacokinetic profiles, and good in vivo efficacy in the mouse A549 xenograft model. Moreover, 12 displayed excellent selectivity over 95 kinases, indicating the contribution of its unusual flipped-peptide conformation to its selectivity.

6.
Article in English | MEDLINE | ID: mdl-17909300

ABSTRACT

Old yellow enzyme (OYE) is an NADPH oxidoreductase that contains a flavin mononucleotide as a prosthetic group. The OYE from Trypanosoma cruzi, which produces prostaglandin F(2alpha), a potent mediator of various physiological and pathological processes, from prostaglandin H2. The protein was recombinantly expressed and purified from Escherichia coli and was crystallized using the hanging-drop vapour-diffusion method. The crystal belongs to the monoclinic space group P2(1), with unit-cell parameters a = 56.3, b = 78.8, c = 78.8 A, beta = 93.4 degrees and two molecules per asymmetric unit. The crystals were suitable for X-ray crystallographic studies and diffracted to 1.70 A resolution. A Patterson search method is in progress using the structure of OYE from Pseudomonas putida as a starting model.


Subject(s)
NADPH Dehydrogenase/analysis , NADPH Dehydrogenase/chemistry , Trypanosoma cruzi/enzymology , Animals , Crystallization , Crystallography, X-Ray
7.
J Biol Chem ; 280(28): 26371-82, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-15845552

ABSTRACT

Trypanosoma brucei prostaglandin F2alpha synthase is an aldo-ketoreductase that catalyzes the reduction of prostaglandin H2 to PGF2alpha in addition to that of 9,10-phenanthrenequinone. We report the crystal structure of TbPGFS.NADP+.citrate at 2.1 angstroms resolution. TbPGFS adopts a parallel (alpha/beta)8-barrel fold lacking the protrudent loops and possesses a hydrophobic core active site that contains a catalytic tetrad of tyrosine, lysine, histidine, and aspartate, which is highly conserved among AKRs. Site-directed mutagenesis of the catalytic tetrad residues revealed that a dyad of Lys77 and His110, and a triad of Tyr52, Lys77, and His110 are essential for the reduction of PGH2 and 9,10-PQ, respectively. Structural and kinetic analysis revealed that His110, acts as the general acid catalyst for PGH2 reduction and that Lys77 facilitates His110 protonation through a water molecule, while exerting an electrostatic repulsion against His110 that maintains the spatial arrangement which allows the formation of a hydrogen bond between His110 and C11 that carbonyl of PGH2. We also show Tyr52 acts as the general acid catalyst for 9,10-PQ reduction, and thus we not only elucidate the catalytic mechanism of a PGH2 reductase but also provide an insight into the catalytic specificity of AKRs.


Subject(s)
Hydroxyprostaglandin Dehydrogenases/chemistry , Hydroxyprostaglandin Dehydrogenases/genetics , Oxidoreductases/metabolism , Prostaglandin H2/chemistry , Trypanosoma brucei brucei/metabolism , Amino Acid Sequence , Animals , Catalysis , Catalytic Domain , Circular Dichroism , Citrates/chemistry , Crystallography, X-Ray , DNA Mutational Analysis , DNA, Complementary/metabolism , Evolution, Molecular , Humans , Hydrogen-Ion Concentration , Kinetics , Ligands , Models, Chemical , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Protein Binding , Protein Conformation , Protein Structure, Secondary , Protons , Rats , Sequence Homology, Amino Acid , Swine , Tyrosine/chemistry , Ultraviolet Rays
8.
J Biochem ; 135(3): 279-83, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15113825

ABSTRACT

Hematopoietic prostaglandin (PG) D synthase (H-PGDS) is responsible for the production of PGD(2) as an allergy or inflammation mediator in mast and Th2 cells. We determined the X-ray structure of human H-PGDS complexed with an inhibitor, 2-(2'-benzothiazolyl)-5-styryl-3-(4'-phthalhydrazidyl) tetrazolium chloride (BSPT) at 1.9 A resolution in the presence of Mg(2+). The styryl group of the inhibitor penetrated to the bottom of the active site cleft, and the tetrazole ring was stabilized by the stacking interaction with Trp104, inducing large movement around the alpha5-helix, which caused the space group of the complex crystal to change from P2(1) to P1 upon binding of BSPT. The phthalhydrazidyl group of BSPT exhibited steric hindrance due to the cofactor, glutathione (GSH), increasing the IC(50) value of BSPT for human H-PGDS from 36.2 micro M to 98.1 micro M upon binding of Mg(2+), because the K(m) value of GSH for human H-PGDS was decreased from 0.60 micro M in the presence of EDTA to 0.14 micro M in the presence of Mg(2+). We have to avoid steric hindrance of the GSH molecule that was stabilized by intracellular Mg(2+) in the mM range in the cytosol for further development of structure-based anti-allergic drugs.


Subject(s)
Hematopoietic System/enzymology , Intramolecular Oxidoreductases/antagonists & inhibitors , Intramolecular Oxidoreductases/chemistry , Tetrazolium Salts/chemistry , Tetrazolium Salts/pharmacology , Benzothiazoles , Crystallography, X-Ray , Humans , Lipocalins , Models, Molecular
9.
J Biochem ; 132(6): 859-61, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12473187

ABSTRACT

Prostaglandin F(2 alpha) is a potent mediator of various physiological and pathological processes. Trypanosoma brucei prostaglandin F(2 alpha) synthase (TbPGFS) catalyzes the NADPH-dependent reduction of 9,11-endoperoxide PGH(2) to PGF(2 alpha), and could thus be involved in the elevation of the PGF(2 alpha) concentration during African trypanosomiasis. In the present report, the purification and crystallization of recombinant TbPGFS are described. The active recombinant enzyme was crystallized by the hanging-drop vapor-diffusion meth-od using ammonium sulfate as a precipitant. The crystal belonged to a tetragonal space group, P4(1)2(1)2 or P4(3)2(1)2, with unit-cell parameters of a = b = 112.3 A, and c = 140.0 A. Native data up to 2.6 A resolution were collected from the crystal using our home facility.


Subject(s)
Bacterial Proteins/chemistry , Hydroxyprostaglandin Dehydrogenases/chemistry , Trypanosoma brucei brucei/enzymology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Dinoprost/metabolism , Humans , Hydroxyprostaglandin Dehydrogenases/genetics , Hydroxyprostaglandin Dehydrogenases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
10.
FEBS Lett ; 527(1-3): 33-6, 2002 Sep 11.
Article in English | MEDLINE | ID: mdl-12220629

ABSTRACT

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the reactions of carboxylation and oxygenation of ribulose-1,5-bisphosphate. These reactions require that the active site should be closed by a flexible loop (loop 6) of the large subunit. Rubisco from a red alga, Galdieria partita, has the highest specificity for carboxylation reaction among the Rubiscos hitherto reported. The crystal structure of unactivated Galdieria Rubisco has been determined at 2.6 A resolution. The electron density map reveals that a sulfate binds only to the P1 anion-binding site of the active site and the loop 6 is closed. Galdieria Rubisco has a unique hydrogen bond between the main chain oxygen of Val332 on the loop 6 and the epsilon-amino group of Gln386 of the same large subunit. This interaction is likely to be crucial to understanding for stabilizing the loop 6 in the closed state and to making a higher affinity for anionic ligands.


Subject(s)
Rhodophyta/chemistry , Ribulose-Bisphosphate Carboxylase/chemistry , Ribulose-Bisphosphate Carboxylase/metabolism , Sulfates/metabolism , Binding Sites , Crystallography, X-Ray , Hydrogen Bonding , Ions , Models, Molecular , Protein Conformation
11.
J Mol Biol ; 316(3): 679-91, 2002 Feb 22.
Article in English | MEDLINE | ID: mdl-11866526

ABSTRACT

Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) catalyzes the initial steps of photosynthetic carbon reduction and photorespiratory carbon oxidation cycles by combining CO(2) and O(2), respectively, with ribulose-1,5-bisphosphate. Many photosynthetic organisms have form I rubiscos comprised of eight large (L) and eight small (S) subunits. The crystal structure of the complex of activated rubisco from the green alga Chlamydomonas reinhardtii and the reaction intermediate analogue 2-carboxyarabinitol-1,5-bisphosphate (2-CABP) has been solved at 1.84 A resolution (R(cryst) of 15.2 % and R(free) of 18.1 %). The subunit arrangement of Chlamydomonas rubisco is the same as those of the previously solved form I rubiscos. Especially, the present structure is very similar to the activated spinach structure complexed with 2-CABP in the L-subunit folding and active-site conformation, but differs in S-subunit folding. The central insertion of the Chlamydomonas S-subunit forms the longer betaA-betaB loop that protrudes deeper into the solvent channel of rubisco than higher plant, cyanobacterial, and red algal (red-like) betaA-betaB loops. The C-terminal extension of the Chlamydomonas S-subunit does not protrude into the solvent channel, unlike that of the red algal S-subunit, but lies on the protein surface anchored by interactions with the N-terminal region of the S-subunit. Further, the present high-resolution structure has revealed novel post-translational modifications. Residue 1 of the S-subunit is N(alpha)-methylmethionine, residues 104 and 151 of the L-subunit are 4-hydroxyproline, and residues 256 and 369 of the L-subunit are S(gamma)-methylcysteine. Furthermore, the unusual electron density of residue 471 of the L-subunit, which has been deduced to be threonine from the genomic DNA sequence, suggests that the residue is isoleucine produced by RNA editing or O(gamma)-methylthreonine.


Subject(s)
Chlamydomonas reinhardtii/enzymology , Pentosephosphates/metabolism , Ribulose-Bisphosphate Carboxylase/chemistry , Ribulose-Bisphosphate Carboxylase/metabolism , Sugar Alcohols/metabolism , Amino Acid Sequence , Animals , Binding Sites , Chlamydomonas reinhardtii/genetics , Crystallography, X-Ray , Enzyme Activation , Kinetics , Methylation , Models, Molecular , Molecular Sequence Data , Protein Folding , Protein Processing, Post-Translational , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Subunits , RNA Editing , Ribulose-Bisphosphate Carboxylase/genetics , Sequence Alignment , Spinacia oleracea/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...