Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 4202, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38378725

ABSTRACT

Hearing loss is the most predominant sensory defect occurring in pediatrics, of which, 66% cases are attributed to genetic factors. The prevalence of hereditary hearing loss increases in consanguineous populations, and the prevalence of hearing loss in Qatar is 5.2%. We aimed to investigate the genetic basis of nonsyndromic hearing loss (NSHL) in Qatar and to evaluate the diagnostic yield of different genetic tests available. A retrospective chart review was conducted for 59 pediatric patients with NSHL referred to the Department of Adult and Pediatric Medical Genetics at Hamad Medical Corporation in Qatar, and who underwent at least one genetic test. Out of the 59 patients, 39 were solved cases due to 19 variants in 11 genes and two copy number variants that explained the NSHL phenotype. Of them 2 cases were initially uncertain and were reclassified using familial segregation. Around 36.8% of the single variants were in GJB2 gene and c.35delG was the most common recurrent variant seen in solved cases. We detected the c.283C > T variant in FGF3 that was seen in a Qatari patient and found to be associated with NSHL for the first time. The overall diagnostic yield was 30.7%, and the diagnostic yield was significantly associated with genetic testing using GJB2 sequencing and using the hearing loss (HL) gene panel. The diagnostic yield for targeted familial testing was 60% (n = 3 patients) and for gene panel was 50% (n = 5). Thus, we recommend using GJB2 gene sequencing as a first-tier genetic test and HL gene panel as a second-tier genetic test for NSHL. Our work provided new insights into the genetic pool of NSHL among Arabs and highlights its unique diversity, this is believed to help further in the diagnostic and management options for NSHL Arab patients.


Subject(s)
Deafness , Hearing Loss , Adult , Humans , Child , Connexins/genetics , Connexin 26/genetics , Mutation , Retrospective Studies , Qatar , Deafness/genetics , Genetic Testing , Hearing Loss/diagnosis , Hearing Loss/genetics
2.
Genes (Basel) ; 13(8)2022 07 30.
Article in English | MEDLINE | ID: mdl-36011280

ABSTRACT

Congenital heart disease (CHD) is one of the most common forms of birth defects worldwide, with a prevalence of 1-2% in newborns. CHD is a multifactorial disease partially caused by genetic defects, including chromosomal abnormalities and single gene mutations. Here, we describe the Sidra Cardiac Registry, which includes 52 families and a total of 178 individuals, and investigate the genetic etiology of CHD in Qatar. We reviewed the results of genetic tests conducted in patients as part of their clinical evaluation, including chromosomal testing. We also performed whole exome sequencing (WES) to identify potential causative variants. Sixteen patients with CHD had chromosomal abnormalities that explained their complex CHD phenotype, including six patients with trisomy 21. Moreover, using exome analysis, we identified potential CHD variants in 24 patients, revealing 65 potential variants in 56 genes. Four variants were classified as pathogenic/likely pathogenic based on the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) classification; these variants were detected in four patients. This study sheds light on several potential genetic variants contributing to the development of CHD. Additional functional studies are needed to better understand the role of the identified variants in the pathogenesis of CHD.


Subject(s)
Heart Defects, Congenital , Chromosome Aberrations , Exome , Heart Defects, Congenital/epidemiology , Heart Defects, Congenital/genetics , Humans , Qatar/epidemiology , Registries
3.
Reprod Fertil Dev ; 34(14): 905-919, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36041737

ABSTRACT

Although Male Infertility (MI) in Arabs is fairly common, there is a dearth in published reports of genetic epidemiology of MI among Arabs. This study aimed to review the existing literature reporting the variants that are associated with MI in the 22 Arab countries. We searched four literature databases (PubMed, Science Direct, Scopus, and Web of Science) from the time of inception until April 2021 using broad search terms to capture all reported genetic data related to Arab patients with MI. Our search strategy identified 3488 articles, of these 34 were eligible for this systemic review. We retrieved data from nine Arab Countries (Tunisia, Algeria, Morocco, Syria, Jordan, Yemen, Iraq, Egypt and Lebanon). Only 2597 patients and 10 families with MI were identified and compared to 3721 controls. Our search strategy identified 25 genes, including 89 variants: 52.7% are shared with other ethnic groups, 41.7% are unique to Arab patients, and 5.6% are common among Arabs. Azoospermia (41.18%) was the most frequently reported phenotype. This is the first systematic review to capture reported variants associated with MI among the Arab populations. Although Arabs seem to share genetic profiles with other ethnicities, they have distinctive genotype-phenotype correlations for some of genetic variants.


Subject(s)
Arabs , Infertility, Male , Arabs/genetics , Genetic Association Studies , Humans , Infertility, Male/epidemiology , Infertility, Male/genetics , Male , Middle East/epidemiology , Molecular Epidemiology
4.
Ophthalmic Epidemiol ; 29(1): 1-12, 2022 02.
Article in English | MEDLINE | ID: mdl-33641569

ABSTRACT

PURPOSE: Primary congenital glaucoma (PCG) is a rare glaucoma type that develops in early infantile period and contributes to an elevated pressure on ocular cavity. Variants in CYP1B1 gene are the most encountered in PCG cases. The prevalence of PCG is relatively high among Arabs, however its genetic epidemiology remains understudied. This study aims to systematically identify all reported PCG disease-causing variants in the Arab population and investigate their potential genotype-phenotype correlations. METHODS: We searched four different databases (PubMed, ScienceDirect, Google Scholar, and Scopus) from the time of inception until July 2020. Broad search terms were used to capture all possible information about the genetic epidemiology of PCG among Arabs. RESULTS: We identified a total of 77 disease-causing variants in 361 patients and 88 families; of these, 33 were unique to Arabs. Sixty-nine variants were identified in the CYP1B1 gene, five variants were in the MYOC gene and single variants were reported in NTF4, FOXC1, and WDR36 genes. The most common reported variant was the c.182 G > A in the CYP1B1 gene. All identified variants were from ten Arab Countries (Saudi Arabia, Kuwait, Oman, Egypt, Morocco, Lebanon, Tunisia, Iraq, Algeria, and Mauritania). We identified 44 shared variants with other ethnicities demonstrated a distinctive genotype-phenotype correlation. Consanguinity was observed in the majority of Arab PCG patients, ranging from 45% to 100%. CONCLUSION: PCG causing variants were identified in 10 Arab countries, which were mostly detected in the CYB1P1 gene. Arab patients with PCG seem to have distinctive genotype-phenotype correlations.


Subject(s)
Arabs , Glaucoma , Arabs/genetics , Cytochrome P-450 CYP1B1/genetics , DNA Mutational Analysis , Genetic Association Studies , Glaucoma/epidemiology , Glaucoma/genetics , Humans , Molecular Epidemiology , Mutation
5.
Molecules ; 25(23)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33255942

ABSTRACT

Filamins (FLN) are a family of actin-binding proteins involved in regulating the cytoskeleton and signaling phenomenon by developing a network with F-actin and FLN-binding partners. The FLN family comprises three conserved isoforms in mammals: FLNA, FLNB, and FLNC. FLNB is a multidomain monomer protein with domains containing an actin-binding N-terminal domain (ABD 1-242), encompassing two calponin-homology domains (assigned CH1 and CH2). Primary variants in FLNB mostly occur in the domain (CH2) and surrounding the hinge-1 region. The four autosomal dominant disorders that are associated with FLNB variants are Larsen syndrome, atelosteogenesis type I (AOI), atelosteogenesis type III (AOIII), and boomerang dysplasia (BD). Despite the intense clustering of FLNB variants contributing to the LS-AO-BD disorders, the genotype-phenotype correlation is still enigmatic. In silico prediction tools and molecular dynamics simulation (MDS) approaches have offered the potential for variant classification and pathogenicity predictions. We retrieved 285 FLNB missense variants from the UniProt, ClinVar, and HGMD databases in the current study. Of these, five and 39 variants were located in the CH1 and CH2 domains, respectively. These variants were subjected to various pathogenicity and stability prediction tools, evolutionary and conservation analyses, and biophysical and physicochemical properties analyses. Molecular dynamics simulation (MDS) was performed on the three candidate variants in the CH2 domain (W148R, F161C, and L171R) that were predicted to be the most pathogenic. The MDS analysis results showed that these three variants are highly compact compared to the native protein, suggesting that they could affect the protein on the structural and functional levels. The computational approach demonstrates the differences between the FLNB mutants and the wild type in a structural and functional context. Our findings expand our knowledge on the genotype-phenotype correlation in FLNB-related LS-AO-BD disorders on the molecular level, which may pave the way for optimizing drug therapy by integrating precision medicine.


Subject(s)
Calcium-Binding Proteins/chemistry , Filamins/chemistry , Microfilament Proteins/chemistry , Models, Molecular , Protein Domains , Chemical Phenomena , Dwarfism/etiology , Evolution, Molecular , Facies , Filamins/genetics , Filamins/metabolism , Genetic Variation , Humans , Molecular Dynamics Simulation , Mutation , Osteochondrodysplasias/etiology , Polymorphism, Single Nucleotide , Protein Conformation , Solvents/chemistry , Structure-Activity Relationship , Calponins
6.
Genes (Basel) ; 11(11)2020 10 25.
Article in English | MEDLINE | ID: mdl-33113859

ABSTRACT

(1) Aims: Diabesity, defined as diabetes occurring in the context of obesity, is a serious health problem that is associated with an increased risk of premature heart attack, stroke, and death. To date, a key challenge has been to understand the molecular pathways that play significant roles in diabesity. In this study, we aimed to investigate the genetic links between diabetes and obesity in diabetic individuals and highlight the role(s) of shared genes in individuals with diabesity. (2) Methods: The interactions between the genes were analyzed using the Search Tool for the Retrieval of Interacting Genes (STRING) tool after the compilation of obesity genes associated with type 1 diabetes (T1D), type 2 diabetes (T2D), and maturity-onset diabetes of the young (MODY). Cytoscape plugins were utilized for enrichment analysis. (3) Results: We identified 546 obesity genes that are associated with T1D, T2D, and MODY. The network backbone of the identified genes comprised 514 nodes and 4126 edges with an estimated clustering coefficient of 0.242. The Molecular Complex Detection (MCODE) generated three clusters with a score of 33.61, 16.788, and 6.783, each. The highest-scoring nodes of the clusters were AGT, FGB, and LDLR genes. The genes from cluster 1 were enriched in FOXO-mediated transcription of oxidative stress, renin secretion, and regulation of lipolysis in adipocytes. The cluster 2 genes enriched in Src homology 2 domain-containing (SHC)-related events triggered by IGF1R, regulation of lipolysis in adipocytes, and GRB2: SOS produce a link to mitogen-activated protein kinase (MAPK) signaling for integrins. The cluster 3 genes ere enriched in IGF1R signaling cascade and insulin signaling pathway. (4) Conclusion: This study presents a platform to discover potential targets for diabesity treatment and helps in understanding the molecular mechanism.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Obesity/genetics , Obesity/pathology , Adipocytes/metabolism , Angiotensinogen/genetics , Fibrinogen/genetics , Gene Regulatory Networks , Lipolysis/physiology , Oxidative Stress/genetics , Receptor, IGF Type 1/metabolism , Receptors, LDL/genetics , Renin/metabolism , Shc Signaling Adaptor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...