Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem Toxicol ; 106(Pt A): 533-546, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28595930

ABSTRACT

This study assessed the toxicological and biological responses of aerosols from a novel hybrid tobacco product. Toxicological responses from the hybrid tobacco product were compared to those from a commercially available Tobacco Heating Product (c-THP), a prototype THP (p-THP) and a 3R4F reference cigarette, using in vitro test methods which were outlined as part of a framework to substantiate the risk reduction potential of novel tobacco and nicotine products. Exposure matrices used included total particulate matter (TPM), whole aerosol (WA), and aqueous aerosol extracts (AqE) obtained after machine-puffing the test products under the Health Canada Intense smoking regime. Levels of carbonyls and nicotine in these matrices were measured to understand the aerosol dosimetry of the products. The hybrid tobacco product tested negative across the in vitro assays including mutagenicity, genotoxicity, cytotoxicity, tumour promotion, oxidative stress and endothelial dysfunction. All the THPs tested demonstrated significantly reduced responses in these in vitro assays when compared to 3R4F. The findings suggest these products have the potential for reduced health risks. Further pre-clinical and clinical assessments are required to substantiate the risk reduction of these novel products at individual and population levels.


Subject(s)
Aerosols/chemistry , Electronic Nicotine Delivery Systems/instrumentation , Flavoring Agents/chemistry , Nicotiana/chemistry , Adult , Consumer Product Safety , Electronic Nicotine Delivery Systems/methods , Electronic Nicotine Delivery Systems/standards , Female , Hot Temperature , Humans , Male , Mutagenesis , Particulate Matter , Smoking
2.
Environ Mol Mutagen ; 58(4): 190-198, 2017 05.
Article in English | MEDLINE | ID: mdl-28444993

ABSTRACT

In vitro cell transformation assays (CTA) are used to assess the carcinogenic potential of chemicals and complex mixtures and can detect nongenotoxic as well as genotoxic carcinogens. The Bhas 42 CTA has been developed with both initiation and promotion protocols to distinguish between these two carcinogen classes. Cigarette smoke is known to be carcinogenic and is positive in in vitro genotoxicity assays. Cigarette smoke also contains nongenotoxic carcinogens and is a tumour promoter and cocarcinogen in vivo. We have combined a suite of in vitro assays to compare the relative biological effects of new categories of tobacco and nicotine products with traditional cigarettes. The Bhas promotion assay has been included in this test battery to provide an in vitro surrogate for detecting tumor promoters. The activity of an electronic cigarette (e-cigarette; Vype ePen) was compared to that of a reference cigarette (3R4F) in the promotion assay, using total particulate matter (TPM)/aerosol collected matter (ACM) and aqueous extracts (AqE) of product aerosol emissions. 3R4F TPM was positive in this assay at concentrations ≥6 µg/mL, while e-cigarette ACM did not have any promoter activity. AqE was found to be a lesssuitable test matrix in this assay due to high cytotoxicity. This is the first study to use the Bhas assay to compare tobacco and nicotine products and demonstrates the potential for its future application as part of a product assessment framework. These data add to growing evidence suggesting that e-cigarettes may provide a safer alternative to traditional cigarettes. Environ. Mol. Mutagen. 58:190-198, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Electronic Nicotine Delivery Systems/adverse effects , Neoplasms/pathology , Animals , Carcinogens/toxicity , Cell Transformation, Neoplastic , In Vitro Techniques , Mice
3.
Toxicol Mech Methods ; 26(6): 465-476, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27690198

ABSTRACT

Tobacco smoking is a risk factor for various diseases. The underlying cellular mechanisms are not fully characterized, but include oxidative stress, apoptosis, and necrosis. Electronic-cigarettes (e-cigarettes) have emerged as an alternative to and a possible means to reduce harm from tobacco smoking. E-cigarette vapor contains significantly lower levels of toxicants than cigarette smoke, but standardized methods to assess cellular responses to exposure are not well established. We investigated whether an in vitro model of the airway epithelium (human bronchial epithelial cells) and commercially available assays could differentiate cellular stress responses to aqueous aerosol extracts (AqE) generated from cigarette smoke and e-cigarette aerosols. After exposure to AqE concentrations of 0.063-0.500 puffs/mL, we measured the intracellular glutathione ratio (GSH:GSSG), intracellular generation of oxidant species, and activation of the nuclear factor erythroid-related factor 2 (Nrf2)-controlled antioxidant response elements (ARE) to characterize oxidative stress. Apoptotic and necrotic responses were characterized by increases in caspase 3/7 activity and reductions in viable cell protease activities. Concentration-dependent responses indicative of oxidative stress were obtained for all endpoints following exposure to cigarette smoke AqE: intracellular generation of oxidant species increased by up to 83%, GSH:GSSG reduced by 98.6% and transcriptional activation of ARE increased by up to 335%. Caspase 3/7 activity was increased by up to 37% and the viable cell population declined by up to 76%. No cellular stress responses were detected following exposure to e-cigarette AqE. The methods used were suitably sensitive to be employed for comparative studies of tobacco and nicotine products.


Subject(s)
Aerosols/toxicity , Electronic Nicotine Delivery Systems/adverse effects , Epithelial Cells/drug effects , Oxidative Stress/drug effects , Smoke/adverse effects , Aerosols/chemistry , Bronchi/cytology , Bronchi/drug effects , Cell Culture Techniques , Cell Line , Epithelial Cells/metabolism , Humans , Nicotine/chemistry , Nicotine/toxicity , Nicotiana/toxicity
4.
Altern Lab Anim ; 39(3): 233-55, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21777038

ABSTRACT

Carcinogenesis is a highly complex, multi-stage process that can occur over a relatively long period before its clinical manifestation. While the sequence in which a cancer cell acquires the necessary traits for tumour formation can vary, there are a number of mechanisms that are common to most, if not all, cancers across the spectrum of possible causes. Many aspects of carcinogenesis can be modelled in vitro. This has led to the development of a number of mechanistically driven, cell-based assays to assess the pro-carcinogenic and anti-carcinogenic potential of chemicals. A review is presented of the current in vitro models that can be used to study carcinogenesis, with examples of cigarette smoke testing in some of these models, in order to illustrate their potential applications. We present an overview of the assays used in regulatory genotoxicity testing, as well as those designed to model other aspects that are considered to be hallmarks of cancer. The latter assays are described with a view to demonstrating the recent advances in these areas, to a point where they should now be considered for inclusion in an overall testing strategy for chemical carcinogens.


Subject(s)
Carcinogenicity Tests/methods , Animals , Apoptosis , Cell Cycle , Cell Line, Transformed , Cell Line, Tumor , Cell Transformation, Neoplastic , Humans , Models, Animal , Mutagenicity Tests , Neovascularization, Pathologic , Smoke/adverse effects , Nicotiana
5.
Altern Lab Anim ; 37(6): 657-69, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20105001

ABSTRACT

Atherosclerosis is a disease process which develops at the arterial branches and curvatures of medium to large arteries. Local haemodynamic flow patterns in these vessels play an essential role in the formation of atherosclerotic lesions. To simulate pro-atherogenic blood flow patterns, we have developed a perfusion system with the ability to simulate in vivo patterns of blood flow in vitro. In this system, human umbilical vein endothelial cells were seeded in y-shaped microslides, in which they were exposed to a variety of flow patterns. Besides being able to reproduce the disturbed flow involved in the development of pro-atherogenic events within the arterial wall, the system also permitted the assessment of the pre-conditioning/priming effect of oscillatory flow on endothelial cells. The system was further capable of integrating multi-endpoint assays relevant to cardiovascular disease. We show that oscillatory flow primed endothelial cells, making them more sensitive to subsequent treatments. The treatment of oscillatory flow primed cells with TNFalpha resulted in the detection of enhanced levels of pro-inflammatory and chemoattractant factors such as IL-8 and MCP-1. These measurements were facilitated by the small volumes of medium circulating within the perfusion system. Oscillatory flow also altered the characteristics of monocyte adhesion to the endothelial layer. In summary, this system allows the monitoring of multiple endpoints and biomarkers, and provides an alternative to the use of in vivo and ex vivo models of cardiovascular disease.


Subject(s)
Endothelial Cells/physiology , Atherosclerosis/pathology , Atherosclerosis/physiopathology , Cell Adhesion/physiology , Cell Culture Techniques/methods , Cell Line , Chemokine CCL2/biosynthesis , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Intercellular Adhesion Molecule-1/biosynthesis , Interleukin-8/metabolism , Interleukin-8/pharmacology , Microscopy, Phase-Contrast , Monocytes/metabolism , Perfusion/methods , Regional Blood Flow , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...