Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Med Entomol ; 59(1): 337-349, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34791327

ABSTRACT

The present study investigated in 8 villages of the Plateau region the coverage, usage, physical integrity, and bio-efficacy of the Olyset nets distributed nationwide by the Benin's National Malaria Control Programme in July 2011. The questionnaire administered as well as the observations made in the households allowed estimating the coverage and usage rates of the 2011 Olyset nets. While their physical integrity was assessed through standard WHO methodology, their bio-efficacy was evaluated through gas chromatography, and WHO cone testing performed with the Kisumu susceptible strain. Mosquito collections through human landing catches (HLCs) were also performed in torn nets to assess if a loss of protection of sleepers occurred as the nets fabric integrity got more damaged. Nine months postdistribution, the coverage and usage rates of the 2011 Olyset nets were 67.4% (95% CI: 65.8-68.9) and 73.3% (95% CI: 70.7-75.8) respectively. About 28% of the 2011 Olyset nets were torn. A drastic drop of the insecticide quantity on the fibers of the nets [from 7.08 µg (95% CI: 5.74-8.42) to 0.2 µg (95% CI: 0.01-0.38)] as well as mortality rates <80% were observed with most nets evaluated. Moreover, the biting rates of An. gambiae s.l. (Diptera: Culicidae) inside torn nets increased in line with their fabric integrity loss. These data support the conclusion that future deployment of nets in the field must be strengthened by community sensitization on their correct use in order to postpone as much as possible appearance of holes and loss of insecticidal activity and encourage repairing of torn nets.


Subject(s)
Anopheles/drug effects , Insecticide-Treated Bednets/statistics & numerical data , Mosquito Control/methods , Animals , Benin , Humans , Insecticides/administration & dosage , Insecticides/pharmacology , Malaria/prevention & control , Permethrin/administration & dosage , Permethrin/pharmacology , Surveys and Questionnaires , Textiles
2.
Malar J ; 19(1): 26, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31941494

ABSTRACT

BACKGROUND: In 2011, Benin's National Malaria Control Programme (NMCP) organized a nationwide mass distribution campaign of LLINs throughout the country. Following this intervention, it was important to assess whether the level of susceptibility of malaria vectors to insecticides had remained the same as compared to the pre-intervention period. The current study investigated this. METHODS: Larval collections were conducted in Ifangni, Sakété, Pobè and Kétou districts located in Plateau department, Southeastern Benin before (2009) and after (2012-2013) LLIN distribution. Anopheles gambiae sensu lato (s.l.) larvae from the 4 study districts were reared to adulthood and WHO susceptibility tests were conducted. The insecticides tested were deltamethrin (0.05%), permethrin (0.75%), bendiocarb (0.1%) and DDT (4%). Molecular species identification as well as, the characterization of the kdr L1014F mutation were also performed in the An. gambiae s.l. complex using PCR method. RESULTS: Overall, a significant decrease in mortality rates of An. gambiae s.l. to deltamethrin (0.05%), permethrin (0.75%) and DDT (4%) was observed post-LLIN distribution, respectively: (100% vs 80.9%, p < 0.0001), (77.5% vs 70%, p = 0.01) and, (47.8% vs 4.4%, p < 0.0001). By contrast, susceptibility of vectors to bendiocarb (0.1%) remained the same (100% mortality in the WHO susceptibility tube tests) pre- and post-intervention. An increase in the kdr L1014F frequency was observed post-LLIN distribution [F(kdr) = 0.91)] compared to the pre-intervention period [F(kdr) = 0.56], p < 0.0001. Anopheles coluzzii and An. gambiae were the two molecular species identified in the study area. CONCLUSION: The decrease susceptibility to pyrethroids and DDT as well as, the increase in the frequency of the kdr L1014F mutation after the intervention stressed at the time, the need for the development and implementation of effective insecticide resistance management strategies. At present, an update of the vectors resistance status in the area is also necessary for decision-making.


Subject(s)
Anopheles , Insecticide Resistance , Insecticide-Treated Bednets , Malaria, Falciparum/prevention & control , Mosquito Vectors , Animals , Anopheles/growth & development , Benin , DDT , Female , Humans , Insecticide-Treated Bednets/statistics & numerical data , Likelihood Functions , Logistic Models , Malaria, Falciparum/transmission , Mosquito Vectors/growth & development , Mutation Rate , Nitriles , Permethrin , Phenylcarbamates , Pyrethrins , World Health Organization
3.
PLoS One ; 10(12): e0145207, 2015.
Article in English | MEDLINE | ID: mdl-26674643

ABSTRACT

Since the first evidence of pyrethroids resistance in 1999 in Benin, mutations have rapidly increased in mosquitoes and it is now difficult to design a study including a control area where malaria vectors are fully susceptible. Few studies have assessed the after effect of resistance on the success of pyrethroid based prevention methods in mosquito populations. We therefore assessed the impact of resistance on the effectiveness of pyrethroids based indoor residual spraying (IRS) in semi-field conditions and long lasting insecticidal nets (LLINs) in laboratory conditions. The results observed showed low repulsion and low toxicity of pyrethroids compounds in the test populations. The toxicity of pyrethroids used in IRS was significantly low with An. gambiae s.l (< 46%) but high for other predominant species such as Mansonia africana (93% to 97%). There were significant differences in terms of the repellent effect expressed as exophily and deterrence compared to the untreated huts (P<0.001). Furthermore, mortality was 23.71% for OlyseNet® and 39.06% for PermaNet®. However, with laboratory susceptible "Kisumu", mortality was 100% for both nets suggesting a resistance within the wild mosquito populations. Thus treatment with pyrethroids at World Health Organization recommended dose will not be effective at reducing malaria in the coming years. Therefore it is necessary to study how insecticide resistance decreases the efficacy of particular pyrethroids used in pyrethroid-based vector control so that a targeted approach can be adopted.


Subject(s)
Anopheles/drug effects , Insect Repellents/toxicity , Insecticide Resistance , Insecticide-Treated Bednets , Malaria/prevention & control , Pyrethrins/toxicity , Animals , Anopheles/genetics , Benin , Female , Insect Repellents/administration & dosage , Malaria/transmission , Pyrethrins/administration & dosage
4.
Parasit Vectors ; 8: 223, 2015 Apr 12.
Article in English | MEDLINE | ID: mdl-25886599

ABSTRACT

BACKGROUND: Insecticides are widely used to control malaria vectors and have significantly contributed to the reduction of malaria-caused mortality. In addition, the same classes of insecticides were widely introduced and used in agriculture in Benin since 1980s. These factors probably contributed to the selection of insecticide resistance in malaria vector populations reported in several localities in Benin. This insecticide resistance represents a threat to vector control tool and should be monitored. The present study reveals observed insecticide resistance trends in Benin to help for a better management of insecticide resistance. METHODS: Mosquito larvae were collected in eight sites and reared in laboratory. Bioassays were conducted on the adult mosquitoes upon the four types of insecticide currently used in public health in Benin. Knock-down resistance, insensitive acetylcholinesterase-1 resistance, and metabolic resistance analysis were performed in the mosquito populations based on molecular and biochemical analysis. The data were mapped using Geographical Information Systems (GIS) with Arcgis software. RESULTS: Mortalities observed with Deltamethrin (pyrethroid class) were less than 90% in 5 locations, between 90-97% in 2 locations, and over 98% in one location. Bendiocarb (carbamate class) showed mortalities ranged 90-97% in 2 locations and were over 98% in the others locations. A complete susceptibility to Pirimiphos methyl and Fenitrothion (organophosphate class) was observed in all locations with 98-100% mortalities. Knock-down resistance frequencies were high (0.78-0.96) and similar between Anopheles coluzzii, Anopheles gambiae, Anopheles arabiensis, and Anopheles melas. Insensitive acetylcholinesterase-1 was rare (0.002-0.1) and only detected in Anopheles gambiae in concomitance with Knock-down resistance mutation. The maps showed a large distribution of Deltamethrin resistance, Knock-down mutation and metabolic resistance throughout the country, a suspected resistance to Bendiocarb and detection of insensitive acetylcholinesterase-1 from northern Benin, and a wide distribution of susceptible vectors to Pirimiphos methyl and Fenitrothion. CONCLUSION: This study showed a widespread resistance of malaria vectors to pyrethroid previously located in southern Benin, an early emergence of carbamates resistance from northern Benin and a full susceptibility to organophosphates. Several resistance mechanisms were detected in vectors with a potential cross resistance to pyrethroids through Knock-down and metabolic resistance mechanisms.


Subject(s)
Anopheles/drug effects , Insect Vectors/drug effects , Insecticide Resistance , Insecticides/pharmacology , Animals , Benin , Biological Assay , Geography , Larva/drug effects , Survival Analysis
5.
Parasit Vectors ; 8: 117, 2015 Feb 22.
Article in English | MEDLINE | ID: mdl-25890190

ABSTRACT

BACKGROUND: Polovodova method based on counting follicular dilatations estimates the number of egg-laying in mosquitoes. However, some researchers doubt the reliability of this method because of the absence of multiple dilatations in vectors after many gonotrophic cycles. It is in this context of controversy that our study was carried out to evaluate the importance of follicular dilatations in the determination of parity levels in An. gambiae s.s. Moreover, the application of this method allowed us to clarify the evolution of vectors' infectivity to P. falciparum according to their parity level. METHODS: We used two techniques to determine the parity level in An. gambiae s.s. We used two batches of wild strain mosquitoes reproduced after a known number of egg-laying in laboratory. The first batch was submitted to oil injection in the ovaries using a micropipette. In the same way, the classic technique of ovaries dilaceration (a technique based on the Polovodova method) was applied to the second batch. In order to assess relationship between parity level and mosquitoes' infectivity, Polovodova method was applied on vectors collected on humans. Finally, Heads and thoraces of these vectors were individually analyzed for P. falciparum antigen detection using an ELISA assay. RESULTS: In the first batch including 50 female mosquitoes "never laid", 50 "laid once", 50 "laid twice" and 48 "three times", oil injection technique revealed 42 nulliparous, 44 uniparous, 46 biparous and 44 triparous respectively. Overall, Polovodova method was effective using oil injection technique (p > 0.05). On the other hand, in the second batch that has a similar number of laying to the first batch, the application of Polovodova method through classical technique of ovaries dilaceration was ineffective with multiparous females (p < 0.05). Moreover, probability of vector infectivity increased with the number of egg-laying (p < 0.0001). CONCLUSION: Our results revealed that the Polovodova method is reliable for estimating the number of egg-laying in Anopheles gambiae s.s. using oil injection technique in the ovaries. The study has also showed an increased likelihood of infectivity in vectors according to the number of egg-laying.


Subject(s)
Anopheles/physiology , Insect Vectors/physiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/physiology , Animals , Benin/epidemiology , Female , Geography , Humans , Malaria, Falciparum/epidemiology , Male , Oviposition , Ovum , Parity , Reproducibility of Results , Reproduction
6.
Malar J ; 13: 444, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25412948

ABSTRACT

BACKGROUND: To better control malaria, the clear and urgent need is for improved data to inform decision makers, but in several African countries, there is a lack of baseline data on vectors and variation in the intensity of malaria transmission. This has resulted in the implementation of vector control efforts that ignore variation in vector behaviour and intensity of transmission, an approach that is most often not cost-effective. This study presents a detailed entomological description of mosquito distribution and variation in potentially transmissible contacts of Plasmodium falciparum following a south to north transect in Benin. METHOD: The study was conducted in five locations where environmental parameters were different and malaria prevalence ranged between 14 and 51%. The locations represent the main eco-epidemiological malaria areas in Benin. Mosquitoes were collected using human landing catches, pyrethrum spray catches and windows traps. They were taxonomically and molecularly identified. Head-thoraces of Anopheles gambiae s.l. were tested by enzyme-linked immunosorbent assay. Entomological indicators were estimated following WHO guidelines. RESULTS: The results showed variation between location and period in distribution of Anopheles coluzzii, An. gambiae, and Anopheles arabiensis (p < 0.05). An extension of the reported range of An. arabiensis was also observed. Densities of malaria vectors varied significantly between rural and urban sites, however, indoor/outdoor biting ratios remained constant. Proportions of malaria vectors with circumsporozoite protein of P. falciparum were similar between locations. The entomological inoculation rates ranged between zero and eight bites/man/night with significant variations between areas.Four profiles of human exposure to infectious malaria vector bites were observed and included location with one season of high transmission (June - August), two seasons of lower transmission (March-August; October-November), moderate continuous transmission season, and high continuous transmission season of P. falciparum. CONCLUSION: The study revealed several entomological patterns in transmission of P. falciparum in Benin. The data could be used for purposes of planning a more cost-effective vector control strategy, by stratifying the country into higher and lower transmission zones. The information could also be used to guide extension of indoor residual spray based on a targeted use of IRS at sites where the duration of insecticidal effect following spraying coincides with the peak transmission period.


Subject(s)
Anopheles/physiology , Anopheles/parasitology , Insect Vectors , Malaria, Falciparum/transmission , Plasmodium falciparum/isolation & purification , Animals , Anopheles/classification , Anopheles/genetics , Antigens, Protozoan/analysis , Benin/epidemiology , Enzyme-Linked Immunosorbent Assay , Feeding Behavior , Humans , Malaria, Falciparum/epidemiology , Population Density , Prevalence
7.
Parasit Vectors ; 7: 256, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24886499

ABSTRACT

BACKGROUND: The National Malaria Control Program (NMCP) has been using pirimiphos methyl for the first time for indoor residual spraying (IRS) in Benin. The first round was a success with a significant decrease of entomological indicators of malaria transmission in the treated districts. We present the results of the entomological impact on malaria transmission. Entomologic parameters in the control area were compared with those in intervention sites. METHODS: Mosquito collections were carried out in three districts in the Atacora-Dongo region of which two were treated with pirimiphos methyl (Actellic 50EC) (Tanguiéta and Kouandé) and the untreated (Copargo) served as control. Anopheles gambiae s.l. populations were sampled monthly by human landing catch. In addition, window exit traps and pyrethrum spray catches were performed to assess exophagic behavior of Anopheles vectors. In the three districts, mosquito collections were organized to follow the impact of pirimiphos methyl IRS on malaria transmission and possible changes in the behavior of mosquitoes. The residual activity of pirimiphos methyl in the treated walls was also assessed using WHO bioassay test. RESULTS: A significant reduction (94.25%) in human biting rate was recorded in treated districts where an inhabitant received less than 1 bite of An. gambiae per night. During this same time, the entomological inoculation rate (EIR) dramatically declined in the treated area (99.24% reduction). We also noted a significant reduction in longevity of the vectors and an increase in exophily induced by pirimiphos methyl on An. gambiae. However, no significant impact was found on the blood feeding rate. Otherwise, the low residual activity of Actellic 50 EC, which is three months, is a disadvantage. CONCLUSION: Pirimiphos methyl was found to be effective for IRS in Benin. However, because of the low persistence of Actellic 50EC used in this study on the treated walls, the recourse to another more residual formulation of pirimiphos methyl is required.


Subject(s)
Anopheles/drug effects , Insecticides/pharmacology , Malaria/transmission , Mosquito Control/methods , Organothiophosphorus Compounds/pharmacology , Animals , Benin/epidemiology , Biological Assay , Housing , Humans , Insect Vectors , Insecticides/administration & dosage , Malaria/epidemiology , Malaria/prevention & control , Organothiophosphorus Compounds/administration & dosage
8.
Malar J ; 13: 193, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24884502

ABSTRACT

BACKGROUND: An investigation carried out in Benin has shown that, in some areas close to rivers where density of mosquitoes is high, long-lasting, insecticidal bed nets (LLINs) are permanently used. In such areas, LLINs are washed every month. Based on this situation, the 20-wash minimum efficacy advised by the manufacturers would be inadequate. The main goal of this study was to evaluate the effectiveness of LifeNet®, Olyset® and Permanet® 2.0 washed several times against Anopheles gambiae sensu stricto (s.s.) populations, which have developed high resistance to pyrethroids. METHODS: Efficacy of LifeNet®, Olyset® and PermaNet® 2.0 washed 30 and 40 times was expressed in terms of blood-feeding inhibition rate, deterrence, induced exophily and mortality rates. This WHOPES phase II evaluation, conducted in experimental huts in Akron (southern Benin) and in Malanville (northern Benin), was accompanied by WHOPES Phase I evaluation. RESULTS: Over 40 successive washes, LifeNet® induced a mortality rate over 80% in phase I. However, beyond 10 washes, Permanet® 2.0 and Olyset induced dramatically reduced mortality rates, respectively 12.5 and 2.5%. With regard to Phase II results, unwashed LifeNet®, LifeNet® and Olyset® washed 30 and 40 times induced a similar exophily rate per study site (at least 58% in Malanville and at least 71% in Akron). Regarding blood feeding inhibition, LifeNet® and Olyset® washed 30 and 40 times significantly reduced wild An. gambiae s.s. blood feeding showing a similar personal protection as unwashed LifeNet®. LifeNet® washed 30 and 40 times induced mortality rates significantly higher than those induced by Olyset® and Permanet® 2.0 (P < 0,05). CONCLUSION: LifeNet®, followed by Olyset®, have shown good efficacy against host-seeking resistant An. gambiae s.s. population in experimental huts in Benin. Lifenet® have shown to be an effective and promising vector control tool to prevent malaria in areas where repeated washings is a common practice in the community.


Subject(s)
Anopheles/drug effects , Anopheles/physiology , Household Work , Insecticide Resistance , Insecticide-Treated Bednets , Insecticides/pharmacology , Pyrethrins/pharmacology , Animals , Benin , Biological Assay , Survival Analysis
9.
Parasit Vectors ; 7: 137, 2014 Mar 31.
Article in English | MEDLINE | ID: mdl-24684886

ABSTRACT

BACKGROUND: The dynamics of mosquito populations depends on availability of suitable surface water for oviposition. It is well known that suitable management of mosquito larval habitats in the sub-Saharan countries, particularly during droughts, could help to suppress vector densities and malaria transmission. We conducted a field survey to investigate the spatial and seasonal distribution of mosquito larval habitats and identify drought-refugia for anopheline larvae. METHODS: A GIS approach was used to identify, geo-reference and follow up longitudinally from May 2012 to May 2013, all mosquito breeding sites in two rural sites (Yondarou and Thui), one urban (Kossarou), and one peri-urban (Pèdè) site at Kandi, a municipality in northeastern Benin. In Kandi, droughts are excessive with no rain for nearly six months and a lot of sunshine. A comprehensive record of mosquito larval habitats was conducted periodically in all sites for the identification of drought-refugia of anopheline larval stages. With geospatialisation data, seasonal larval distribution maps were generated for each study site with the software ArcGIS version 10.2. RESULTS: Overall, 187 mosquito breeding sites were identified of which 29.95% were recorded during drought. In rural, peri-urban and urban sites, most of the drought-refugia of anopheline larvae were domestic in nature (61.54%). Moreover, in rural settings, anopheline larvae were also sampled in cisterns and wells (25% of larval habitats sampled during drought in Yondarou and 20% in Thui). The mapping showed a significant decrease in the spatial distribution of mosquito larval habitats in rural, peri-urban and urban sites during drought, except in Yondarou (rural) where the aridity did not seem to influence the distribution of larval habitats. CONCLUSION: Our data showed that the main drought-refugia of anopheline larvae were of a domestic nature as well as wells and cisterns. A suitable management of mosquito larvae in sub-Saharan countries, particularly during droughts, should target such larval habitats for a meaningful impact on the dynamics of mosquito populations and malaria transmission.


Subject(s)
Anopheles/physiology , Ecosystem , Animals , Benin , Demography , Larva/physiology , Rain , Rural Population , Seasons , Urban Population
10.
BMC Infect Dis ; 14: 103, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24564260

ABSTRACT

BACKGROUND: This study aims to research two areas, one with a resistant and the other with a susceptible profile of An. gambiae to deltamethrin in the region of Plateau (southern Benin). In each area, eight localities were sought. Both areas were needed for the assessment of the impact of malaria vector resistance to pyrethroids on the effectiveness of Long Lasting Insecticidal Nets (LLINs). The susceptible area of An. gambiae to deltamethrin was used as a control. METHODS: In total, 119 localities in the region of Plateau were screened by sampling An. gambiae s.l larvae. Female mosquitoes resulting from these larvae were exposed to 0.05% deltamethrin following WHO standards. PCR was used to identify species and molecular forms of the dead and alive mosquitoes. Finally, we identified kdr mutations (1014 F and 1014S) using the HOLA technique. RESULTS: Fifty-six out of 119 prospected localities tested positive for Anopheles gambae s.l breeding sites. The results showed that An. gambiae was resistant to deltamethrin in 39 localities and susceptible in only 2 localities; resistance to deltamethrin was suspected in 15 localities. The HOLA technique confirmed the presence of kdr 1014 F mutation and the absence of kdr 1014S mutation. The kdr 1014 F mutation was found in both M and S molecular forms at relatively high frequencies therefore confirming the susceptibility tests. CONCLUSION: We were unable to identify the eight susceptible areas due to the overall resistance of An. gambiae to deltamethrin in the region of Plateau. To implement the study, we kept two areas, one with high resistance (R+++) and the other with low resistance (R+) of An. gambiae to deltamethrin.


Subject(s)
Anopheles/genetics , Insecticide-Treated Bednets , Insecticides/pharmacology , Nitriles/pharmacology , Pyrethrins/pharmacology , Animals , Anopheles/drug effects , Benin , Female , Insecticide Resistance/genetics , Larva/drug effects , Malaria/prevention & control , Mutation , Polymerase Chain Reaction , Vascular Endothelial Growth Factor Receptor-2/genetics
11.
Parasit Vectors ; 7: 79, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24564957

ABSTRACT

BACKGROUND: In arid settings, droughts usually lead to periods of very low or no malaria transmission. However, in rural Kandi (Sonsoro) in northeastern Benin, several malaria cases are often diagnosed during dry seasons. The underlying factors accounting for this phenomenon remain unknown. METHODS: The entomological profile of Sonsoro has been studied compared to a location in urban Kandi (Gansosso) for a period of one year. During this period, Anopheles larval habitats were investigated and populations of Anopheles gambiae s.l. were sampled by human landing catches in both areas. Enzyme-linked immunosorbent assays (ELISA) for Plasmodium falciparum circumsporozoite protein (CSP) were conducted on vector specimens and the entomological inoculation rates (EIR) were determined per season (wet versus dry) in each area. In addition, during the severe drought period, Rapid Diagnostic Tests (RDTs) were conducted on school children under the age 10 years in these areas to provide a global view of drought-malaria prevalence and to perform a crossing with entomological data in Kandi. RESULTS: Overall, An. gambiae s.l. was particularly abundant in rural Kandi compared to the urban area with a significant decrease of vector density in both sites during the dry season. In this period, larval sampling data identified household water sources as potential breeding sites in urban and rural Kandi. We also observed a significant seasonal variation of the infectivity rate in both areas but for each period (season), the EIR was higher in the rural site than in the urban. Data of P. falciparum detection was the reflection of entomological findings. The drought-malaria prevalence was 5.5 times higher in rural Kandi as compared to urban Kandi. The presence of a permanent water site and the low level of urbanization in rural Kandi were identified as a risk factor. CONCLUSION: Our data showed a high level of malaria transmission in the municipality of Kandi. Household water source plays an important role in maintaining the breeding of anopheles larvae and the malaria transmission in Kandi. In rural settings, the proximity to permanent water sites could probably be the aggravating factor.


Subject(s)
Anopheles/parasitology , Culicidae/parasitology , Insect Vectors/parasitology , Malaria, Falciparum/epidemiology , Plasmodium falciparum/isolation & purification , Animals , Benin/epidemiology , Child , Climate , Droughts , Ecosystem , Female , Geography , Humans , Larva , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Male , Plasmodium falciparum/immunology , Prevalence , Rural Population , Seasons , Urban Population , Water/parasitology
12.
BMC Infect Dis ; 14: 69, 2014 Feb 08.
Article in English | MEDLINE | ID: mdl-24507444

ABSTRACT

BACKGROUND: LLIN distribution, every three years, is a key intervention of Benin's malaria control strategy. However, data from the field indicate that LLIN lifespan appears to vary based on both intrinsic (to the LLIN) and extrinsic factors. METHODS: We monitored two indicators of LLIN durability, survivorship and integrity, to validate the three-year-serviceable-life assumption. Interviews with net owners were used to identify factors associated with loss of integrity. RESULTS: Observed survivorship, after 18 months, was significantly less (p<0.0001) than predicted, based on the assumption that nets last three years. Instead, it was closer to predicted survivorship based on a two-year LLIN serviceable life assumption (p=0.03). Furthermore, the integrity of nearly one third of 'surviving' nets was so degraded that they were in need of replacement. Five factors: washing frequency, proximity to water for washing, location of kitchen, type of cooking fuel, and low net maintenance were associated with loss of fabric integrity. CONCLUSION: A two-year serviceable life for the current LLIN intervention in Benin would be a more realistic program assumption.


Subject(s)
Insecticide-Treated Bednets , Insecticides/administration & dosage , Malaria/prevention & control , Mosquito Control/methods , Animals , Benin , Culicidae , Equipment Failure , Humans , Time Factors
13.
Parasit Vectors ; 7: 6, 2014 Jan 04.
Article in English | MEDLINE | ID: mdl-24387635

ABSTRACT

BACKGROUND: Following a mass distribution of long-lasting insecticidal nets (LLINs) in Benin, we used WHO guidelines to develop an assessment tool which is described in this report. It involved assessment of the three WHO indicators: survivorship, integrity and bio-efficacy. METHODS: To evaluate the assessment tool, we selected four communities, two in the Southern part of the country, and two in the North. One of the two assessment communities in each geographic setting had ready access to water and a higher reported frequency of washing LLINs. It was assumed that nets in communities with greater washing frequencies would show greater loss of durability. If the tool was sensitive enough to detect such differences, the field testing would confirm its suitability for general use in different settings in Benin. While durability indicators of survival and fabric integrity were quantified using standard WHO methodology, bio-efficacy was assessed using a 'new' alternative (to the WHO bioassay test), involving gas chromatography. Additionally, data management used current internet technology for 'real time' analysis at a central monitoring location. RESULTS: While no difference in survivorship was observed between sites with ready access to water for washing, both in the North and the South, there was a significant difference in integrity. In the South and in the North, nets from sites near water (Kessounou and Malanville) showed greater damage to integrity than did the nets from Allada and Kandi (sites far from water). As expected, LLIN integrity was significantly lower when a community was near water (p < 0.01). Bio-efficacy measurements, based on GC, were found to be so variable. CONCLUSION: A rapid decrease of the LLINs fabric integrity was observed in areas near water for washing following the first 6 months post-distribution. Due to the way that the insecticide is incorporated into the LLIN fiber and its migration to the surface, confounding results were observed with the GC analysis suggesting that the WHO bio-efficacy method may also be similarly affected. The report of other assessments could help to better understand the durability of the LLINs.


Subject(s)
Insecticide-Treated Bednets , Mosquito Control , Benin , Geography , Humans , Malaria/prevention & control , Malaria/transmission
14.
Trans R Soc Trop Med Hyg ; 108(2): 84-91, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24463582

ABSTRACT

BACKGROUND: Using the same insecticide for multiple successive indoor residual spraying (IRS) cycles is not recommended; instead, the National Malaria Control Program (NMCP) has decided to select another insecticide (insecticide B) in addition to bendiocarb for indoor residual spraying. METHODS: An experimental hut trial comparing the effectiveness of three classes of insecticides (one carbamate [bendiocarb], two organophosphates [fenitrothion and pirimiphos methyl] and one pyrethroid [lambdacyalothrin]) was conducted in Malanville, northern Benin, against wild free entered resistant Anopheles gambiae s.l. population to pyrethroids. RESULTS: Fenitrothion and pirimiphos methyl yielded the highest rate of deterrence. Their mean rates were respectively 46.6% and 35.4%. Regarding blood feeding inhibition, only fenitrothion has induced a significant inhibition rate (25.4% as mean rate). As regards the exophily rates, only lambdacyhalothrin has induced the highest rate (39.7%). Pirimiphos methyl showed the highest mortality rate and also induced a mortality rate of at least 80% in blood fed An. gambiae population after 24 h observation time. Furthermore, the huts treated with pirimiphos methyl showed the highest residual effect, followed by lambdacyhalothrin. CONCLUSION: Benin NMCP has selected pirimiphos methyl as insecticide B to alternate or combine to bendiocarb (carbamate) because of the adverse effects of fenitrothion on the sleepers and its short residual effect on walls.


Subject(s)
Anopheles/drug effects , Insect Control/methods , Insecticide Resistance/drug effects , Insecticides , Malaria/prevention & control , Organothiophosphorus Compounds , Phenylcarbamates , Animals , Benin , Housing
15.
Parasit Vectors ; 6: 223, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23919515

ABSTRACT

BACKGROUND: Insecticide resistance monitoring is essential to help national programmers to implement more effective and sustainable malaria control strategies in endemic countries. The current study aimed at an exploring the involvement of detoxifying enzymes in the insecticide phenotype resistance in Anopheles gambiae s.l.from Benin, in order to guide future malaria vector control interventions. METHODS: Larvae and pupae of Anopheles gambiae s.l. mosquitoes were collected from the breeding sites in Oueme, Atacora and Alibori provinces. CDC susceptibility tests were conducted on unfed female mosquitoes aged 2-5 days old. CDC bioassays were performed with stock solutions of permethrin (21.5 µg per bottle), deltamethrin (12.5 µg per bottle) and bendiocarb (12.5 µg per bottle). CDC biochemical assays using synergists were also conducted to assess the metabolic resistance. RESULTS: The susceptibility of Anopheles gambiae Agbalilame and Kandi populations to permethrin and deltamethrin respectively, increased significantly when synergized by PBO, suggesting an implication of mono-oxygenases in resistance of Anopheles gambiae s.l. to pyrethroid. Esterases may play a role in bendiocarb resistance in Anopheles gambiae Tanguieta. CONCLUSION: Synergists partially restored susceptibility to pyrethroid and carbamate insecticides and might help mitigate the impact of vector resistance in Anopheles gambiae Agbalilame, Kandi and Tanguieta populations. However, additional vector control tools are needed to further impact on malaria transmission in such settings.This will improve the implementation and management of future control programs against this important malaria vector in Benin and in Africa in general.


Subject(s)
Anopheles/enzymology , Esterases/metabolism , Insecticides/pharmacology , Malaria/prevention & control , Mixed Function Oxygenases/metabolism , Mosquito Control , Animals , Anopheles/drug effects , Biological Assay , Drug Synergism , Female , Humans , Insect Proteins/metabolism , Insecticide Resistance , Larva , Nitriles/pharmacology , Permethrin/pharmacology , Phenotype , Phenylcarbamates/pharmacology , Pyrethrins/pharmacology
16.
BMC Public Health ; 13: 751, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23941585

ABSTRACT

BACKGROUND: Studies indicate that physical damage to long-lasting insecticide-treated nets (LLINs) occurs at a surprisingly rapid rate following net distribution. To what extent does such damage affect the impact of LLINs? Can vectors pass a compromised LLIN barrier to bite? Do more resistant vectors enter the insecticide-treated nets (ITNs) through holes? METHODS: The study was carried out in three geo-locations. Two types of LLINs (polyester and polyethylene) with 'standardized' physical damage were compared with similarly damaged, but non-insecticidal (control) nets. The proportionate Holes Index (pHI) of each net was 276. Mosquitoes were captured inside the nets, identified taxonomically, and subjected to molecular analysis to estimate Knock-down resistance (Kdr) frequency. RESULTS: The most commonly observed species was Anopheles gambiae, accounting for approximately 70% (1,076/1,550) of the total mosquitoes collected both in LLINs and non-insecticidal nets. When compared with controls, number of vectors captured in torn LLINs was significantly reduced. Nonetheless in a night, an average of 5 An. gambiae s.l could enter the damaged LLINs to bite. Similar numbers of resistant mosquitoes were collected in both LLINs and non-insecticidal (control) nets (p > 0.05). CONCLUSIONS: At a pHI of 276, man-vector contact was observed in torn LLINs. The insecticide at the surface of LLINs could only reduce the number of vectors. Resistant mosquitoes have opportunity to enter both non-insecticidal (control) nets and LLINs to bite.


Subject(s)
Anopheles , Insect Bites and Stings/prevention & control , Insect Vectors , Insecticide-Treated Bednets/standards , Animals , Anopheles/classification , Anopheles/drug effects , Case-Control Studies , Humans , Insect Vectors/drug effects , Insecticide Resistance , Insecticides/pharmacology
17.
Parasit Vectors ; 6: 192, 2013 Jun 26.
Article in English | MEDLINE | ID: mdl-23803527

ABSTRACT

BACKGROUND: Owing to pyrethroid resistance in An. gambiae, the carbamate and organophosphate insecticides are currently regarded as alternatives or supplements to pyrethroids for use on mosquito net treatments. Resistance monitoring is therefore essential to investigate the susceptibility of An. gambiae s.l to these alternative products. METHODS: Two to three day old adult female Anopheles mosquitoes were reared from larvae collected in the five districts (Kouandé, Natitingou, Matéri, Péhunco, Tanguiéta) of the Atacora department. Mosquitoes were then exposed to WHO impregnated papers. The four treatments consisted of: carbamates (0.1% bendiocarb, 0.1% propoxur) and organophosphates (0.25% pirimiphosmethyl, 1% fenitrothion). PCR assays were run to determine the members of the An. gambiae complex, the molecular forms (M) and (S), as well as phenotypes for insensitive acetylcholinesterase (AChE1) due to ace-1(R) mutation. RESULTS: Bioassays showed bendiocarb resistance in all populations of An. gambiae s.s. tested. Propoxur resistance was observed in Matéri, Péhunco and Tanguiéta, while it was suspected in Kouandé and Natitingou. As for the organophosphates, susceptibility to pirimiphos-methyl was assessed in all populations. Fenitrothion resistance was detected in Kouandé, Péhunco and Tanguiéta, while it was suspected in Matéri and Natitingou. The S-form was predominant in tested samples (94.44%). M and S molecular forms were sympatric but no M/S hybrids were detected. The ace-1(R) mutation was found in both S and M molecular forms with frequency from 3.6 to 12%. Although the homozygous resistant genotype was the most prevalent genotype among survivors, the genotypes could not entirely explain the bioassay results. CONCLUSION: Evidence of bendiocarb resistance in An. gambiae populations is a clear indication that calls for the implementation of insecticide resistance management strategies. The ace-1(R) mutation could not entirely explain the resistance to bendiocarb observed and is highly suggestive of involvement of other resistance mechanisms such as metabolic detoxification.


Subject(s)
Anopheles/drug effects , Insect Vectors/drug effects , Insecticide Resistance , Insecticides/pharmacology , Phenylcarbamates/pharmacology , Acetylcholinesterase/genetics , Animals , Anopheles/classification , Anopheles/genetics , Benin , Biological Assay , Female , Genotype , Humans , Malaria/prevention & control , Malaria/transmission , Mosquito Control/methods , Mutation , Polymerase Chain Reaction , Survival Analysis
18.
Parasit Vectors ; 6: 73, 2013 Mar 16.
Article in English | MEDLINE | ID: mdl-23497708

ABSTRACT

BACKGROUND: Indoor residual spraying (IRS) was implemented in the department of Ouémé-Plateau, southern Benin, in 2008 and withdrawn in 2011, when long lasting insecticidal nets (LLINs) were distributed to the communities that were previously targeted by IRS. Did the LLIN strategy provide a better level of protection against malaria transmission than IRS? METHODS: Entomological surveillance was carried out to assess indicators of transmission risk during the last year of IRS and the first year after the LLIN intervention was put in place (2010-2011). Mosquito biting density was sampled by human landing collection (HLC). Females of Anopheles gambiae s.l. were dissected to estimate the parity rates and the blood meal index. A subsample of the An. gambiae s.l. collection was tested for presence of Plasmodium falciparum sporozoites. In addition, window exit traps and pyrethrum spray catches were performed to assess exophagic behavior of Anopheles vectors. RESULTS: There were significant increases in all the indicators following withdrawal of IRS. Vector biting density (p<0.001) and longevity (OR=3.81[3.01-4.82] 95% CI; p<0.001) of the An. gambiae s.l. increased significantly; so too did the blood meal index (OR=1.48 [1.1-1.99] 95% CI; p<0.001). Entomological inoculation rate, after IRS withdrawal at one surveillance site, Adjohoun, rose two fold (9.0 infected bites/person/9 months (Apr-Dec 2011) versus 3.66 infective bites/person during the 9 months preceding IRS (Apr-Dec 2010). A second site, Missérété, experienced a six-fold increase after IRS cessation (15.1 infective bites/person/9 months versus 2.41 during IRS). Exophily after IRS cessation decreased significantly in all areas (p<0.001) suggesting that mosquitoes were more likely to rest in houses with LLINs, than in houses subjected to IRS. CONCLUSION: LLINs did not impact on indicators of transmission to the same levels as did IRS after IRS withdrawal.


Subject(s)
Anopheles/drug effects , Insect Bites and Stings/prevention & control , Insect Vectors/drug effects , Insecticides/pharmacology , Malaria/prevention & control , Plasmodium falciparum/drug effects , Animals , Benin , Female , Geography , Humans , Insecticide Resistance , Insecticide-Treated Bednets , Malaria/transmission , Mosquito Control , Phenylcarbamates/pharmacology , Pyrethrins/pharmacology
19.
Parasit Vectors ; 6(1): 319, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24499508

ABSTRACT

BACKGROUND: A dynamic study on the transmission of malaria was conducted in two areas (R⁺ area: Low resistance area; R⁺⁺⁺ area: High resistance area) in the department of Plateau in South Eastern Benin, where the population is protected by Long Lasting Insecticidal Nets (LLINs). The aim of this study was to determine if the resistance of malaria vectors to insecticides has an impact on their behavior and on the effectiveness of LLINs in the reduction of malaria transmission. METHODS: Populations of Anopheles gambiae s.l. were sampled monthly by human landing catch in the two areas to evaluate human biting rates (HBR). Collected mosquitoes were identified morphologically and female Anopheles mosquitoes were tested for the presence of Plasmodium falciparum antigen as assessed using ELISA. The entomological inoculation rate (EIR) was also calculated (EIR = HBR x sporozoitic index [S]). We estimated the parity rate by dissecting the females of An. gambiae. Finally, window catch and spray catch were conducted in order to assess the blood feeding rate and the exophily rate of vectors. RESULTS: After 6 months of tracking the mosquito's behavior in contact with the LLINs (Olyset) in R⁺⁺⁺ and R⁺ areas, the entomological indicators of the transmission of malaria (parity rate and sporozoitic index) were similar in the two areas. Also, An. gambiae populations showed the same susceptibility to P. falciparum in both R⁺ and R⁺⁺⁺ areas. The EIR and the exophily rate are higher in R⁺ area than in R⁺⁺⁺ area. But the blood-feeding rate is lower in R⁺ area comparing to R⁺⁺⁺. CONCLUSION: The highest entomological inoculation rate observed in R⁺ area is mostly due to the strong aggressive density of An. gambiae recorded in one of the study localities. On the other hand, the highest exophily rate and the low blood-feeding rate recorded in R⁺ area compared to R⁺⁺⁺ area are not due to the resistance status of An. gambiae, but due to the differences in distribution and availability of breeding sites for Anopheles mosquitoes between areas. However, this phenomenon is not related to the resistance status, but is related to the environment instead.


Subject(s)
Anopheles/drug effects , Anopheles/parasitology , Insecticide Resistance , Insecticide-Treated Bednets/statistics & numerical data , Malaria/prevention & control , Plasmodium falciparum/isolation & purification , Pyrethrins/pharmacology , Animals , Antigens, Protozoan/analysis , Benin , Child, Preschool , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant , Infant, Newborn
20.
Parasit Vectors ; 5: 72, 2012 Apr 10.
Article in English | MEDLINE | ID: mdl-22490146

ABSTRACT

BACKGROUND: In Benin, Indoor Residual Spraying (IRS) and long-lasting insecticidal nets (LLINs) are the cornerstones of malaria prevention. In the context of high resistance of Anopheles gambiae to pyrethroids, The National Malaria Control Program (NMCP) has undertaken a full coverage of IRS in a no-flood zone in the Oueme region, coupled with the distribution of LLINs in a flood zone. We assessed the impact of this campaign on phenotypic resistance, kdr (knock-down resistance) and ace-1(R) (insensitive acetylcholinesterase) mutations. METHODS: Insecticides used for malaria vector control interventions were bendiocarb WP (0.4 g/m²) and deltamethrin (55 mg/m²), respectively for IRS and LLINs. Susceptibility status of An. gambiae was assessed using World Health Organization bioassay tests to DDT, permethrin, deltamethrin and bendiocarb in the Oueme region before intervention (2007) and after interventions in 2008 and 2010. An. gambiae specimens were screened for identification of species, molecular M and S forms and for the detection of the West African kdr (L1014F) as well as ace-1(R) mutations using PCR techniques. RESULTS: The univariate logistic regression performed showed that kdr frequency has increased significantly during the three years in the intervention area and in the control area. Several factors (LLINs, IRS, mosquito coils, aerosols, use of pesticides for crop protection) could explain the selection of individual resistant An. gambiae. The Kdr resistance gene could not be the only mechanism of resistance observed in the Oueme region. The high susceptibility to bendiocarb is in agreement with a previous study conducted in Benin. However, the occurrence of ace-1(R) heterozygous individuals even on sites far from IRS areas, suggests other factors may contribute to the selection of resistance other than those exerted by the vector control program. CONCLUSION: The results of this study have confirmed that An.gambiae have maintained and developed the resistance to pyrethroids, but are still susceptible to bendiocarb. Our data clearly shows that selection of resistant individuals was caused by other insecticides than those used by the IRS and LLINs.


Subject(s)
Anopheles/drug effects , Drug Utilization/statistics & numerical data , Insecticide Resistance , Insecticide-Treated Bednets/statistics & numerical data , Insecticides/pharmacology , Mosquito Control/methods , Mosquito Control/statistics & numerical data , Animals , Benin , Female , Insect Proteins/genetics , Malaria/prevention & control , Nitriles/pharmacology , Phenylcarbamates/pharmacology , Pyrethrins/pharmacology , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...