Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Rep Prog Phys ; 80(5): 054401, 2017 05.
Article in English | MEDLINE | ID: mdl-28059773

ABSTRACT

Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond = 1 as = 10-18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is ∼152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution.

2.
Nat Commun ; 7: 11717, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27241851

ABSTRACT

The promise of ultrafast light-field-driven electronic nanocircuits has stimulated the development of the new research field of attosecond nanophysics. An essential prerequisite for advancing this new area is the ability to characterize optical near fields from light interaction with nanostructures, with sub-cycle resolution. Here we experimentally demonstrate attosecond near-field retrieval for a tapered gold nanowire. By comparison of the results to those obtained from noble gas experiments and trajectory simulations, the spectral response of the nanotaper near field arising from laser excitation can be extracted.

3.
Opt Express ; 24(1): 92-101, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26832240

ABSTRACT

We theoretically analyze a method for characterizing propagating surface plasmon polaritons (SPPs) on a thin gold film. The SPPs are excited by few-cycle near-infrared pulses using Kretschmann coupling, and a nanotip is used as a local field sensor. This geometry removes the influence of the incident excitation laser from the near fields, and enhances the plasmon electric field strength. Using finite-difference-time-domain studies we show that the geometry can be used to measure SPP waveforms as a function of propagation distance. The effects of the nanotip shape and material on the field enhancement and plasmonic response are discussed.

4.
Rev Sci Instrum ; 85(10): 103117, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25362381

ABSTRACT

We present a simple electron time of flight spectrometer for time resolved photoelectron spectroscopy of liquid samples using a vacuum ultraviolet (VUV) source produced by high-harmonic generation. The field free spectrometer coupled with the time-preserving monochromator for the VUV at the Artemis facility of the Rutherford Appleton Laboratory achieves an energy resolution of 0.65 eV at 40 eV with a sub 100 fs temporal resolution. A key feature of the design is a differentially pumped drift tube allowing a microliquid jet to be aligned and started at ambient atmosphere while preserving a pressure of 10(-1) mbar at the micro channel plate detector. The pumping requirements for photoelectron (PE) spectroscopy in vacuum are presented, while the instrument performance is demonstrated with PE spectra of salt solutions in water. The capability of the instrument for time resolved measurements is demonstrated by observing the ultrafast (50 fs) vibrational excitation of water leading to temporary proton transfer.


Subject(s)
Photoelectron Spectroscopy/instrumentation , Solutions/chemistry , Ultraviolet Rays , Vacuum , Calibration , Equipment Design , Time Factors
5.
Opt Express ; 20(23): 25239-48, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23187340

ABSTRACT

We report studies of high-order harmonic generation in laser-produced manganese plasmas using sub-4-fs drive laser pulses. The measured spectra exhibit resonant enhancement of a small spectral region of about 2.5 eV width around the 31st harmonic (~50eV). The intensity contrast relative to the directly adjacent harmonics exceeds one order of magnitude. This finding is in sharp contrast to the results reported previously for multi-cycle laser pulses [Physical Review A 76, 023831 (2007)]. Theoretical modelling suggests that the enhanced harmonic emission forms an isolated sub-femtosecond pulse.

6.
Rev Sci Instrum ; 83(7): 071101, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22852664

ABSTRACT

We describe a complete technological system at Imperial College London for Attosecond Science studies. The system comprises a few-cycle, carrier envelope phase stabilized laser source which delivers sub 4 fs pulses to a vibration-isolated attosecond vacuum beamline. The beamline is used for the generation of isolated attosecond pulses in the extreme ultraviolet (XUV) at kilohertz repetition rates through laser-driven high harmonic generation in gas targets. The beamline incorporates: interferometers for producing pulse sequences for pump-probe studies; the facility to spectrally and spatially filter the harmonic radiation; an in-line spatially resolving XUV spectrometer; and a photoelectron spectroscopy chamber in which attosecond streaking is used to characterize the attosecond pulses. We discuss the technology and techniques behind the development of our complete system and summarize its performance. This versatile apparatus has enabled a number of new experimental investigations which we briefly describe.

7.
Opt Express ; 20(1): 90-100, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22274332

ABSTRACT

We have investigated resonance effects in high-order harmonic generation (HHG) within laser-produced plasmas. We demonstrate a significantly improved harmonic yield by using two-color pump-induced enhancement and a 1 kHz pulse repetition rate. Together with an increased HHG output, the even harmonics in the cutoff region were enhanced with respect to odd harmonics. We report the observation of a resonance-induced growth in intensity of 20th harmonic in silver plasma (2×), 26th harmonic in vanadium plasma (4×), and 28th harmonic in chromium plasma (5×).


Subject(s)
Aluminum Oxide/chemistry , Lasers , Plasma Gases/chemistry , Titanium/chemistry , Color , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...