Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(25): e2306991121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38830112

ABSTRACT

Research has the potential to simultaneously generate new knowledge and contribute meaningful social-ecological benefits; however, research processes and outcomes can also perpetuate extractive patterns that have manifested the climate, biodiversity, and social justice crises. One approach to enhance the societal value of research processes is to strengthen relationships with places of study and the peoples of those places. Deepening relational engagement with the social-ecological context and history of a place can lead to more accurate results and improved public trust in the scientific process and is particularly important for natural scientists who work at the interface of nature and society. We provide three actionable pathways that range from individual to systemic change to enhance place-based relationships within research systems: 1) deepen reflection and communication about relationships with places and peoples; 2) strengthen collaboration among research teams and partners; and 3) transform systems of knowledge creation to foster place-based roots. Action on any of these proposed pathways, but especially action taken across all three, can build empathy and connections to place and people, strengthening the meaningful impact of research both locally and globally.


Subject(s)
Research , Humans , Social Justice , Communication , Cooperative Behavior
2.
Ecol Appl ; 31(4): e2307, 2021 06.
Article in English | MEDLINE | ID: mdl-33604951

ABSTRACT

Natural resources often exhibit large interannual fluctuations in productivity driven by shifting environmental conditions, and this translates to high variability in the revenue resource users earn. However, users can dampen this variability by harvesting a portfolio of resources. In the context of fisheries, this means targeting multiple populations, though the ability to actually build diverse fishing portfolios is often constrained by the costs and availability of fishing permits. These constraints are generally intended to prevent overcapitalization of the fleet and ensure populations are fished sustainably. As linked human-natural systems, both ecological and fishing dynamics influence the specific advantages and disadvantages of increasing the diversity of fishing portfolios. Specifically, a portfolio of synchronous populations with similar responses to environmental drivers should reduce revenue variability less than a portfolio of asynchronous populations with opposite responses. We built a bioeconomic model based on the Dungeness crab (Metacarcinus magister), Chinook salmon (Oncorhynchus tshawytscha), and groundfish fisheries in the California Current, and used it to explore the influence of population synchrony and permit access on income patterns. As expected, synchronous populations reduced revenue variability less than asynchronous populations, but only for portfolios including crab and salmon. Synchrony with the longer-lived groundfish population was not important because environmentally driven changes in groundfish recruitment were mediated by growth and natural mortality over the full population age structure, and overall biomass was relatively stable across years. Thus, building a portfolio of diverse life histories can buffer against the impacts of poor environmental conditions over short time scales. Increasing access to all permits generally led to increased revenue stability and decreased inequality of the fleet, but also resulted in less revenue earned by an individual from a given portfolio because more vessels shared the available biomass. This means managers are faced with a trade-off between the average revenue individuals earn and the risk those individuals accept. These results illustrate the importance of considering connections between social and ecological dynamics when evaluating management options that constrain or facilitate fishers' ability to diversify their fishing.


Subject(s)
Fisheries , Natural Resources , Animals , Conservation of Natural Resources , Ecosystem , Humans , Population Dynamics , Salmon
3.
Science ; 365(6454)2019 08 16.
Article in English | MEDLINE | ID: mdl-31416936

ABSTRACT

Szuwalski argues that varying age structure can affect surplus production and that recruitment is a better metric of productivity. We explain how our null model controlled for age structure and other processes as explanations for the temperature-production relationship. Surplus production includes growth, recruitment, and other processes and provides a more complete description of food production impacts than does recruitment alone.


Subject(s)
Fisheries , Population Dynamics , Temperature
4.
Science ; 363(6430): 979-983, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30819962

ABSTRACT

Climate change is altering habitats for marine fishes and invertebrates, but the net effect of these changes on potential food production is unknown. We used temperature-dependent population models to measure the influence of warming on the productivity of 235 populations of 124 species in 38 ecoregions. Some populations responded significantly positively (n = 9 populations) and others responded significantly negatively (n = 19 populations) to warming, with the direction and magnitude of the response explained by ecoregion, taxonomy, life history, and exploitation history. Hindcasts indicate that the maximum sustainable yield of the evaluated populations decreased by 4.1% from 1930 to 2010, with five ecoregions experiencing losses of 15 to 35%. Outcomes of fisheries management-including long-term food provisioning-will be improved by accounting for changing productivity in a warmer ocean.


Subject(s)
Climate Change , Fisheries , Animals , Ecosystem , Fishes , Models, Theoretical , Population Dynamics , Temperature
5.
Environ Monit Assess ; 190(9): 530, 2018 Aug 18.
Article in English | MEDLINE | ID: mdl-30121848

ABSTRACT

Quantifying the impacts of disturbances such as oil spills on marine species can be challenging. Natural environmental variability, human responses to the disturbance (e.g., fisheries closures), the complex life histories of the species being monitored, and limited pre-spill data can make detection of effects of oil spills difficult. Using long-term monitoring data from the state of Louisiana (USA), we applied novel spatiotemporal approaches to identify anomalies in species occurrence and catch rates. We included covariates (salinity, temperature, turbidity) to help isolate unusual events. While some species showed evidence of unlikely temporal anomalies in occurrence or catch rates, we found that the majority of the observed anomalies were also before the Deepwater Horizon event. Several species-gear combinations suggested upticks in the spatial variability immediately following the spill, but most species indicated no trend. Across species-gear combinations, there was no clear evidence for synchronous or asynchronous responses in occurrence or catch rates across sites following the spill. Our results are in general agreement to other analyses of monitoring data that detected small impacts, but in contrast to recent results from ecological modeling that showed much larger effects of the oil spill on fish and shellfish.


Subject(s)
Fisheries/statistics & numerical data , Fishes/physiology , Petroleum Pollution/analysis , Water Pollutants, Chemical/analysis , Animals , Environmental Monitoring , Gulf of Mexico , Humans , Louisiana , Seafood/analysis , Spatio-Temporal Analysis , Water Pollution, Chemical/statistics & numerical data
6.
Carbon Balance Manag ; 10(1): 25, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26500691

ABSTRACT

BACKGROUND: Accounting for carbon gains and losses in young-growth forests is a key part of carbon assessments. A common silvicultural practice in young forests is thinning to increase the growth rate of residual trees. However, the effect of thinning on total stand carbon stock in these stands is uncertain. In this study we used data from 284 long-term growth and yield plots to quantify the carbon stock in unthinned and thinned young growth conifer stands in the Alaskan coastal temperate rainforest. We estimated carbon stocks and carbon accretion rates for three thinning treatments (basal area removal of 47, 60, and 73 %) and a no-thin treatment across a range of productivity classes and ages. We also accounted for the carbon content in dead trees to quantify the influence of both thinning and natural mortality in unthinned stands. RESULTS: The total tree carbon stock in naturally-regenerating unthinned young-growth forests estimated as the asymptote of the accretion curve was 484 (±26) Mg C ha-1 for live and dead trees and 398 (±20) Mg C ha-1 for live trees only. The total tree carbon stock was reduced by 16, 26, and 39 % at stand age 40 y across the increasing range of basal area removal. Modeled linear carbon accretion rates of stands 40 years after treatment were not markedly different with increasing intensity of basal area removal from reference stand values of 4.45 Mg C ha-1 year-1to treatment stand values of 5.01, 4.83, and 4.68 Mg C ha-1 year-1 respectively. However, the carbon stock reduction in thinned stands compared to the stock of carbon in the unthinned plots was maintained over the entire 100 year period of observation. CONCLUSIONS: Thinning treatments in regenerating forest stands reduce forest carbon stocks, while carbon accretion rates recovered and were similar to unthinned stands. However, that the reduction of carbon stocks in thinned stands persisted for a century indicate that the unthinned treatment option is the optimal choice for short-term carbon sequestration. Other ecologically beneficial results of thinning may override the loss of carbon due to treatment. Our model estimates can be used to calculate regional carbon losses, alleviating uncertainty in calculating the carbon cost of the treatments.

8.
Proc Natl Acad Sci U S A ; 112(21): 6648-52, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25848018

ABSTRACT

Forage fish support the largest fisheries in the world but also play key roles in marine food webs by transferring energy from plankton to upper trophic-level predators, such as large fish, seabirds, and marine mammals. Fishing can, thereby, have far reaching consequences on marine food webs unless safeguards are in place to avoid depleting forage fish to dangerously low levels, where dependent predators are most vulnerable. However, disentangling the contributions of fishing vs. natural processes on population dynamics has been difficult because of the sensitivity of these stocks to environmental conditions. Here, we overcome this difficulty by collating population time series for forage fish populations that account for nearly two-thirds of global catch of forage fish to identify the fingerprint of fisheries on their population dynamics. Forage fish population collapses shared a set of common and unique characteristics: high fishing pressure for several years before collapse, a sharp drop in natural population productivity, and a lagged response to reduce fishing pressure. Lagged response to natural productivity declines can sharply amplify the magnitude of naturally occurring population fluctuations. Finally, we show that the magnitude and frequency of collapses are greater than expected from natural productivity characteristics and therefore, likely attributed to fishing. The durations of collapses, however, were not different from those expected based on natural productivity shifts. A risk-based management scheme that reduces fishing when populations become scarce would protect forage fish and their predators from collapse with little effect on long-term average catches.


Subject(s)
Fishes , Food Chain , Animals , Biomass , Conservation of Natural Resources , Ecosystem , Fisheries , Fishes/physiology , Models, Biological , Population Dynamics
9.
J Anim Ecol ; 84(1): 60-70, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25056097

ABSTRACT

The potential of predation to structure marine food webs is widely acknowledged. However, available tools to detect the regulation of prey population dynamics by predation are limited, partly because available population data often aggregate a population's age structure into a single biomass or abundance metric. Additionally, many food webs are relatively complex, with prey species subject to different assemblages of predators throughout their ontogeny. The goal of this study was to evaluate the extent to which stage-structured predation could be reliably detected from time series of total biomass of predators and prey. We simulated age-structured populations of four mid-trophic-level fish species with distinct life-history traits, exposed them to variable predation at different life stages and fit production models to resulting population biomass to determine how reliably the effects of predators could be detected. Predation targeting early life history and juvenile life stages generally led to larger fluctuations in annual production and was therefore more detectable. However, ecologically realistic levels of observation error and environmental stochasticity masked most predator signals. The addition of predation at a second life stage sharply decreased the ability to detect the effect of each predator. We conclude that the absence of detectable species interactions from biomass time series may be partly due to the interactive effects of environmental variability and complex food web linkages and life histories. We also note that predation signals are most robust for predator-prey systems where predators primarily act on mortality of submature life-history stages. Simulation testing can be applied widely to evaluate the statistical power of analyses to detect predation effects.


Subject(s)
Fishes/physiology , Food Chain , Predatory Behavior , Animals , Biomass , Fisheries , Models, Biological , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...