Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Data ; 11(1): 540, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796485

ABSTRACT

Amongst fishes, zebrafish (Danio rerio) has gained popularity as a model system over most other species and while their value as a model is well documented, their usefulness is limited in certain fields of research such as behavior. By embracing other, less conventional experimental organisms, opportunities arise to gain broader insights into evolution and development, as well as studying behavioral aspects not available in current popular model systems. The anabantoid paradise fish (Macropodus opercularis), an "air-breather" species has a highly complex behavioral repertoire and has been the subject of many ethological investigations but lacks genomic resources. Here we report the reference genome assembly of M. opercularis using long-read sequences at 150-fold coverage. The final assembly consisted of 483,077,705 base pairs (~483 Mb) on 152 contigs. Within the assembled genome we identified and annotated 20,157 protein coding genes and assigned ~90% of them to orthogroups.


Subject(s)
Fishes , Genome , Animals , Fishes/genetics
2.
bioRxiv ; 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37609174

ABSTRACT

Over the decades, a small number of model species, each representative of a larger taxa, have dominated the field of biological research. Amongst fishes, zebrafish (Danio rerio) has gained popularity over most other species and while their value as a model is well documented, their usefulness is limited in certain fields of research such as behavior. By embracing other, less conventional experimental organisms, opportunities arise to gain broader insights into evolution and development, as well as studying behavioral aspects not available in current popular model systems. The anabantoid paradise fish (Macropodus opercularis), an "air-breather" species from Southeast Asia, has a highly complex behavioral repertoire and has been the subject of many ethological investigations, but lacks genomic resources. Here we report the reference genome assembly of Macropodus opercularis using long-read sequences at 150-fold coverage. The final assembly consisted of ≈483 Mb on 152 contigs. Within the assembled genome we identified and annotated 20,157 protein coding genes and assigned ≈90% of them to orthogroups. Completeness analysis showed that 98.5% of the Actinopterygii core gene set (ODB10) was present as a complete ortholog in our reference genome with a further 1.2 % being present in a fragmented form. Additionally, we cloned multiple genes important during early development and using newly developed in situ hybridization protocols, we showed that they have conserved expression patterns.

3.
Proteomics ; 23(16): e2200380, 2023 08.
Article in English | MEDLINE | ID: mdl-37148169

ABSTRACT

The use of poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) as carriers for chemotherapeutic drugs is regarded as an actively targeted nano-therapy for the specific delivery of anti-cancer drugs to target cells. However, the exact mechanism by which PLGA NPs boost anticancer cytotoxicity at the molecular level remains largely unclear. This study employed different molecular approaches to define the response of carcinoma FaDu cells to different types of treatment, specifically: paclitaxel (PTX) alone, drug free PLGA NPs, and PTX-loaded PTX-PLGA NPs. Functional cell assays revealed that PTX-PLGA NPs treated cells had a higher level of apoptosis than PTX alone, whereas the complementary, UHPLC-MS/MS (TIMS-TOF) based multi-omics analyses revealed that PTX-PLGA NPs treatment resulted in increased abundance of proteins associated with tubulin, as well as metabolites such as 5-thymidylic acid, PC(18:1(9Z)/18:1(9Z0), vitamin D, and sphinganine among others. The multi-omics analyses revealed new insights about the molecular mechanisms underlying the action of novel anticancer NP therapies. In particular, PTX-loaded NPs appeared to exacerbate specific changes induced by both PLGA-NPs and PTX as a free drug. Hence, the PTX-PLGA NPs' molecular mode of action, seen in greater detail, depends on this synergy that ultimately accelerates the apoptotic process, resulting in cancer cell death.


Subject(s)
Antineoplastic Agents , Head and Neck Neoplasms , Nanoparticles , Humans , Paclitaxel/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Polyglactin 910 , Polylactic Acid-Polyglycolic Acid Copolymer , Multiomics , Tandem Mass Spectrometry , Polyglycolic Acid , Lactic Acid , Cell Line, Tumor , Head and Neck Neoplasms/drug therapy , Drug Carriers/pharmacology
4.
Cancer Chemother Pharmacol ; 90(6): 467-488, 2022 12.
Article in English | MEDLINE | ID: mdl-36264351

ABSTRACT

PURPOSE: HER2-enriched breast cancer with high levels of hormone receptor expression, known as "triple positive" breast cancer, may represent a new entity with a relatively favourable prognosis against which the combination of chemotherapy, HER-2 inhibition, and endocrine treatment may be considered overtreatment. We explored the effect of the anticancer drugs tamoxifen and trastuzumab, both separately and in combination, on the integrated proteomic and metabolic profile of "triple positive" breast cancer cells (BT-474). METHOD: We employed ultra-high-performance liquid chromatography-quadrupole time of flight mass spectrometry using a Bruker timsTOF to investigate changes in BT-474 cell line treated with either tamoxifen, trastuzumab or a combination. Differentially abundant metabolites were identified using the Bruker Human Metabolome Database metabolite library and proteins using the Uniprot proteome for Homo sapiens using MetaboScape and MaxQuant, respectively, for identification and quantitation. RESULTS: A total of 77 proteins and 85 metabolites were found to significantly differ in abundance in BT-474 treated cells with tamoxifen 5 µM/and or trastuzumab 2.5 µM. Findings suggest that by targeting important cellular signalling pathways which regulate cell growth, apoptosis, proliferation, and chemoresistance, these medicines have a considerable anti-growth effect in BT-474 cells. Pathways enriched for dysregulation include RNA splicing, neutrophil degranulation and activation, cellular redox homeostasis, mitochondrial transmembrane transport, ferroptosis and necroptosis, ABC transporters and central carbon metabolism. CONCLUSION: Our findings in protein and metabolite level research revealed that anti-cancer drug therapy had a significant impact on the key signalling pathways and molecular processes in triple positive BT-474 cell lines.


Subject(s)
Breast Neoplasms , Tamoxifen , Humans , Female , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Proteomics , Receptor, ErbB-2/metabolism , Mass Spectrometry , Cell Line, Tumor
5.
PLoS One ; 17(8): e0271870, 2022.
Article in English | MEDLINE | ID: mdl-35939435

ABSTRACT

Proteome profile changes post-severe acute respiratory syndrome coronavirus 2 (post-SARS-CoV-2) infection in different body sites of humans remains an active scientific investigation whose solutions stand a chance of providing more information on what constitutes SARS-CoV-2 pathogenesis. While proteomics has been used to understand SARS-CoV-2 pathogenesis, there are limited data about the status of proteome profile in different human body sites infected by the SARS-CoV-2 virus. To bridge this gap, our study aims to characterize the proteins secreted in urine, bronchoalveolar lavage fluid (BALF), gargle solution, and nasopharyngeal samples and assess the proteome differences in these body samples collected from SARS-CoV-2-positive patients. We downloaded publicly available proteomic data from (https://www.ebi.ac.uk/pride/). The data we downloaded had the following identifiers: (i) PXD019423, n = 3 from Charles Tanford Protein Center in Germany. (ii) IPX0002166000, n = 15 from Beijing Proteome Research Centre, China. (iii) IPX0002429000, n = 5 from Huazhong University of Science and Technology, China, and (iv) PXD022889, n = 18 from Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA. MaxQuant was used for the human peptide spectral matching using human and SARS-CoV-2 proteome database which we downloaded from the UniProt database (access date 13th October 2021). The individuals infected with SARS-CoV-2 viruses displayed a different proteome diversity from the different body sites we investigated. Overally, we identified 1809 proteins across the four sample types we compared. Urine and BALF samples had significantly more abundant SARS-CoV-2 proteins than the other body sites we compared. Urine samples had 257(33.7%) unique proteins, followed by nasopharyngeal with 250(32.8%) unique proteins. Gargle solution and BALF had 38(5%) and 73(9.6%) unique proteins respectively. Urine, gargle solution, nasopharyngeal, and bronchoalveolar lavage fluid samples have different protein diversity in individuals infected with SARS-CoV-2. Moreover, our data also demonstrated that a given body site is characterized by a unique set of proteins in SARS-CoV-2 seropositive individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Bronchoalveolar Lavage Fluid , Humans , Mouthwashes , Proteome , Proteomics
6.
J Proteomics ; 265: 104660, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35728772

ABSTRACT

The 2020 global cancer registry has ranked breast cancer (BCa) as the most commonly diagnosed type of cancer and the most common cause of cancer-related deaths in women worldwide. Increasing resistance and significant side effects continue to limit the efficacy of anti-BCa drugs, hence the need to identify new drug targets and to develop novel compounds to overcome these limitations. Nature-inspired anti-cancer compounds are becoming increasingly popular since they often provide a relatively safe and effective alternative. In this study, we employed multi-omics techniques to gain insights into the relevant mechanism of action of two recently identified new nature-inspired anti-cancer compounds (SIMR3066 and SIMR3058). Discovery proteomics analysis combined with LC-MS/MS-based untargeted metabolomics analysis was performed on compound-treated vs DMSO-treated (control) MCF-7 cells. Downstream protein functional enrichment analysis showed that most of the responsive proteins were functionally associated with antigen processing and neutrophil degranulation, RNA catabolism and protein folding as well as cytoplasmic vesicle lumen and mitochondrial matrix formation. Consistent with the proteomics findings, metabolomic pathway analysis suggested that the differentially abundant compounds indicated altered metabolic pathways such as glycolysis, the Krebs cycle and oxidative phosphorylation. Furthermore, metabolomics-based enriched-for-action pathway analysis showed that the two compounds associate with mercaptopurine, thioguanine and azathioprine related pathways. Lastly, integrated proteomics and metabolomics analysis revealed that treatment of BCa with SIMR3066 disrupts several signaling pathways including p53-mediated apoptosis and the circadian entertainment pathway. Overall, the multi-omics approach we used in this study indicated that it is a powerful tool in probing the mechanism of action of lead drug candidates. SIGNIFICANCE: In this study we adopted a multi-omics (proteomics and metabolomics) strategy to learn more about the molecular mechanisms of action of nature-inspired potential anticancer drugs. Following treatment with SIMR3066 or SIMR3058, the integration of these multi-omics data sets revealed which biological pathways are altered in BCa cells. This study demonstrates that combining proteomics with metabolomics is a powerful method to investigate the mechanism of action of potential anticancer lead drug candidates.


Subject(s)
Breast Neoplasms , Tandem Mass Spectrometry , Chromatography, Liquid , Female , Humans , Metabolomics/methods , Proteomics/methods
7.
Egypt J Med Hum Genet ; 23(1): 115, 2022.
Article in English | MEDLINE | ID: mdl-37521832

ABSTRACT

Background: Since the COVID-19 outbreak emerged, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continuously evolved into variants with underlying mutations associated with increased transmissibility, potential escape from neutralizing antibodies, and disease severity. Although intensive research is ongoing worldwide to understand the emergence of SARS-CoV-2 variants, there is a lack of information on what constitutes the expressed RNA variants in critical and non-critical comorbidity-free young patients. The study sought  to characterize the expressed RNA variants from young patients with critical and non-critical forms of SARS-CoV-2 infection. Methodology: The bulk ribonucleic acid (RNA) sequencing data with the identifier GSE172114 were downloaded from the Gene Expression Omnibus (GEO) database. The study participants were divided into critical, n = 46, and non-critical, n = 23. FastQC version 0.11.9 and Cutadapt version 3.7 were used to assess the read quality and perform adapter trimming, respectively. Spliced Transcripts Alignment to a Reference (STAR) version 2.7.10a was used to align reads to the human (hg38) reference genome. Genome Analysis Tool Kit (GATK) best practice was followed to call variants using the rnavar pipeline, part of the nf-core pipelines. Results: Our research demonstrates that critical and non-critical SARS-CoV-2-infected individuals are characterized by a unique set of expressed RNA variants. The expressed gene variants are enriched on the innate immune response, specifically neutrophil-mediated immune response. On the other hand, the expressed gene variants are involved in both innate and cellular immune responses. Conclusion: Deeply phenotyped comorbidity-free young patients with critical and non-critical SARS-CoV-2 infection are characterized by a unique set of expressed RNA variants. The findings in this study can inform the patient classification process in health facilities globally when admitting young patients infected with SARS-CoV-2.

8.
Egypt J Med Hum Genet ; 23(1): 84, 2022.
Article in English | MEDLINE | ID: mdl-37521845

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a significant public health challenge globally. SARS-CoV-2 is a novel virus, and the understanding of what constitutes expressed RNAseq variants in healthy, convalescent, severe, moderate, and those admitted to the intensive care unit (ICU) is yet to be presented. We characterize the different expressed RNAseq variants in healthy, severe, moderate, ICU, and convalescent individuals. Materials and methods: The bulk RNA sequencing data with identifier PRJNA639275 were downloaded from Sequence Reads Archive (SRA). The individuals were divided into: (1) healthy, n = 34, moderate, n = 8, convalescent, n = 2, severe, n = 16, and ICU, n = 8. Fastqc version 0.11.9 and Cutadapt version 3.7 were used to assess the read quality and perform adapter trimming, respectively. STAR was used to align reads to the reference genome, and GATK best practice was followed to call variants using the rnavar pipeline, part of the nf-core pipelines. Results: Our analysis demonstrated that different sets of unique RNAseq variants characterize convalescent, moderate, severe, and those admitted to the ICU. The data show that the individuals who recover from SARS-CoV-2 infection have the same set of expressed variants as the healthy controls. We showed that the healthy and SARS-CoV-2-infected individuals display different sets of expressed variants characteristic of the patient phenotype. Conclusion: The individuals with severe, moderate, those admitted to the ICU, and convalescent display a unique set of variants. The findings in this study will inform the test kit development and SARS-CoV-2 patients classification to enhance the management and control of SARS-CoV-2 infection in our population.

9.
PLoS One ; 16(6): e0253218, 2021.
Article in English | MEDLINE | ID: mdl-34143825

ABSTRACT

Mounting evidence suggests that Lactobacillus species may not necessarily be the sine qua non of healthy cervicovaginal microbiota (CVM), especially among reproductive-age African women. A majority of African women have high-diversity non-Lactobacillus-dominated CVM whose bacterial functions remain poorly characterized. Functional profiling of the CVM is vital for investigating human host-microbiota interactions in health and disease. Here, we investigated the functional potential of L. iners-dominated and high-diversity non-Lactobacillus-dominated CVM of 75 African women with and without bacterial vaginosis (BV) and high-risk human papillomavirus (HR-HPV) infection. Functional contents were predicted using PICRUSt. Microbial taxonomic diversity, BV, and HR-HPV infection statuses were correlated with the inferred functional composition of the CVM. Differentially abundant inferred functional categories were identified using linear discriminant analysis (LDA) effect size (LEfSe) (p-value <0.05 and logarithmic LDA score >2.0). Of the 75 women, 56 (74.7%), 35 (46.7%), and 29 (38.7%) had high-diversity non-Lactobacillus-dominated CVM, BV, and HR-HPV infection, respectively. Alpha diversity of the inferred functional contents (as measured by Shannon diversity index) was significantly higher in women with high-diversity non-Lactobacillus-dominated CVM and BV than their respective counterparts (H statistic ≥11.5, q-value <0.001). Ordination of the predicted functional metagenome content (using Bray-Curtis distances) showed that the samples segregated according to the extent of microbial taxonomic diversity and BV (pseudo-F statistic ≥19.6, q-value = 0.001) but not HR-HPV status (pseudo-F statistic = 1.7, q-value = 0.159). LEfSe analysis of the inferred functional categories revealed that transport systems (including ABC transporters) and transcription factors were enriched in high-diversity CVM. Interestingly, transcription factors and sporulation functional categories were uniquely associated with high-diversity CVM, BV, and HR-HPV infection. Our predictive functional analysis reveals features unique to high-diversity CVM, BV and HR-HPV infections. Such features may represent important biomarkers of BV and HR-HPV infection. Our findings require proof-of-concept functional studies to examine the relevance of these potential biomarkers in women's reproductive health and disease.


Subject(s)
Cervix Uteri/microbiology , Microbiota/physiology , Papillomavirus Infections/microbiology , Vagina/microbiology , Vaginosis, Bacterial/microbiology , Adolescent , Adult , Female , Humans , Lactobacillus/isolation & purification , Young Adult
10.
PLoS One ; 12(2): e0172960, 2017.
Article in English | MEDLINE | ID: mdl-28235021

ABSTRACT

Treatment failure is a key challenge in the management of HIV-1 infection. We conducted a mixed-model survey of plasma nevirapine (NVP) concentrations (cNVP) and viral load in order to examine associations with treatment and adherence outcomes among Kenyan patients on prolonged antiretroviral therapy (ART). Blood plasma was collected at 1, 4 and 24 hours post-ART dosing from 58 subjects receiving NVP-containing ART and used to determine cNVP and viral load (VL). Median duration of treatment was 42 (range, 12-156) months, and 25 (43.1%) of the patients had virologic failure (VF). cNVP was significantly lower for VF than non- VF at 1hr (mean, 2,111ng/ml vs. 3,432ng/ml, p = 0.003) and at 4hr (mean 1,625ng/ml vs. 3,999ng/ml, p = 0.001) but not at 24hr post-ART dosing. Up to 53.4%, 24.1% and 22.4% of the subjects had good, fair and poor adherence respectively. cNVP levels peaked and were > = 3µg.ml at 4 hours in a majority of patients with good adherence and those without VF. Using a threshold of 3µg/ml for optimal therapeutic nevirapine level, 74% (43/58), 65.5% (38/58) and 86% (50/58) of all patients had sub-therapeutic cNVP at 1, 4 and 24 hours respectively. cNVP at 4 hours was associated with adherence (p = 0.05) and virologic VF (p = 0.002) in a chi-square test. These mean cNVP levels differed significantly in non-parametric tests between adherence categories at 1hr (p = 0.005) and 4hrs (p = 0.01) and between ART regimen categories at 1hr (p = 0.004) and 4hrs (p<0.0001). Moreover, cNVP levels correlated inversely with VL (p< = 0.006) and positively with adherence behavior. In multivariate tests, increased early peak NVP (cNVP4) was independently predictive of lower VL (p = 0.002), while delayed high NVP peak (cNVP24) was consistent with increased VL (p = 0.033). These data strongly assert the need to integrate plasma concentrations of NVP and that of other ART drugs into routine ART management of HIV-1 patients.


Subject(s)
Anti-HIV Agents/blood , HIV Infections/drug therapy , HIV-1/drug effects , Nevirapine/blood , Adolescent , Adult , Aged , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/therapeutic use , Child , Female , HIV Infections/blood , HIV Infections/virology , Humans , Kenya , Male , Medication Adherence , Middle Aged , Nevirapine/pharmacokinetics , Nevirapine/therapeutic use , Treatment Failure , Viral Load , Young Adult
11.
AIDS Res Hum Retroviruses ; 31(5): 550-3, 2015 May.
Article in English | MEDLINE | ID: mdl-25748548

ABSTRACT

There is continuous need to track genetic profiles of HIV strains circulating in different geographic settings to hasten vaccine discovery and inform public health and intervention policies. We partially sequenced the reverse transcriptase region of the HIV-1 pol gene from a total of 54 Kenyan patients aged 18-56 years who continued highly active antiretroviral treatment (HAART) for between 8 and 102 months. Subtyping was done using both the JPHMM tool and phylogenetic method. HIV-1 subtype A1 was the predominant strain in circulation, representing 57.4% and 70.4% of all isolates as determined by JPHMM and phylogenetic methods, respectively. Subtypes D (14.8%, 7.4%), C (5.6%, 9.3%), and A2 (0%, 5.6%) were determined at respective prevalence by both methods. JPHMM identified 22.2% of the isolates as recombinants. This surveillance focused on the RT gene and reaffirms the predominance of subtype A and an increasing proportion of recombinant strains in the Kenyan epidemic.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Genetic Variation , Genotype , HIV Infections/virology , HIV Reverse Transcriptase/genetics , HIV-1/classification , HIV-1/genetics , Adolescent , Adult , Female , Genotyping Techniques , HIV Infections/drug therapy , HIV-1/isolation & purification , Humans , Kenya , Male , Middle Aged , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Young Adult
12.
AIDS Res Hum Retroviruses ; 31(4): 452-5, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25423998

ABSTRACT

There is a continuous need to genetically characterize the HIV strains in circulation in order to assess interventions and inform vaccine discovery. We partially sequenced the envelope C2V3 gene from a total of 59 Kenyan patients on highly active antiretroviral treatment (HAART) and determined HIV subtypes using both the JPHMM subtyping tool and the phylogenetic method. HIV-1 subtype A1 was the predominant strain in circulation, representing 65.5% and 74.5% of all isolates as determined by JPHMM and phylogenetic methods, respectively. Subtypes C and D were the next most prevalent pure strains at 9.1% each by both methods. JPHMM identified 9.1% of the isolates as recombinant. Four isolates had short sequences not covering the entire C2V3 region and were thus not subtyped. From this study, subtype A viruses are still the predominant HIV-1 strains in local circulation in Kenya. Constant surveillance is needed to update molecular trends under continuing HAART scale-up.


Subject(s)
Antiretroviral Therapy, Highly Active , Genetic Variation , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/classification , HIV-1/genetics , env Gene Products, Human Immunodeficiency Virus/genetics , Adult , Aged , Cluster Analysis , Female , Genotype , HIV Infections/epidemiology , HIV-1/isolation & purification , Humans , Kenya/epidemiology , Male , Middle Aged , Molecular Epidemiology , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Sequence Homology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...