Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dig Dis Sci ; 67(12): 5407-5415, 2022 12.
Article in English | MEDLINE | ID: mdl-35357608

ABSTRACT

The ongoing pandemic resulting from severe acute respiratory syndrome-caused by coronavirus 2 (SARS-CoV-2)-has posed a multitude of healthcare challenges of unprecedented proportions. Intestinal enterocytes have the highest expression of angiotensin-converting enzyme-2 (ACE2), which functions as the key receptor for SARS-CoV-2 entry into cells. As such, particular interest has been accorded to SARS-CoV-2 and how it manifests within the gastrointestinal system. The acute and chronic alimentary clinical implications of infection are yet to be fully elucidated, however, the gastrointestinal consequences from non-SARS-CoV-2 viral GI tract infections, coupled with the generalized nature of late sequelae following COVID-19 disease, would predict that motility disorders are likely to be seen in these patients. Determination of the chronic effects of COVID-19 disease, herein defined as GI disease which is persistent or recurrent more than 3 months following recovery from the acute respiratory illness, will require comprehensive investigations comprising combined endoscopic- and motility-based evaluation. It will be fascinating to ascertain whether the specific post-COVID-19 phenotype is hypotonic or hypertonic in nature and to identify the most vulnerable target portions of the gut. A specific biological hypothesis is that motility disorders may result from SARS-CoV-2-induced angiotensin-converting enzyme 2 (ACE2) depletion. Since SARS-CoV-2 is known to exhibit direct neuronal tropism, the potential also exists for the development of neurogenic motility disorders. This review aims to explore some of the potential pathophysiologic mechanisms underlying motility dysfunction as it relates to ACE2 and thereby aims to provide the foundation for mechanism-based potential therapeutic options.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Gastrointestinal Motility , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , COVID-19/complications , Gastrointestinal Diseases/virology
2.
Nutrients ; 13(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374784

ABSTRACT

Dysbiosis is implicated by many studies in the pathogenesis of Parkinson's disease (PD). Advances in sequencing technology and computing have resulted in confounding data regarding pathogenic bacterial profiles in conditions such as PD. Changes in the microbiome with reductions in short-chain fatty acid (SCFA)-producing bacteria and increases in endotoxin-producing bacteria likely contribute to the pathogenesis of PD. GPR109A, a G-protein coupled receptor found on the surface of the intestinal epithelium and immune cells, plays a key role in controlling intestinal permeability and the inflammatory cascade. The absence of GPR109A receptors is associated with decreased concentration of tight junction proteins, leading to increased intestinal permeability and susceptibility to inflammation. In inflammatory states, butyrate acts via GPR109A to increase concentrations of tight junction proteins and improve intestinal permeability. Niacin deficiency is exacerbated in PD by dopaminergic medications. Niacin supplementation has been shown to shift macrophage polarization from pro-inflammatory to an anti-inflammatory profile. Niacin and butyrate, promising nutrients and unique ligands for the G protein-coupled receptor GPR109A, are reviewed in this paper in detail.


Subject(s)
Butyrates/therapeutic use , Dietary Supplements , Dysbiosis/drug therapy , Intestinal Mucosa/drug effects , Niacin/therapeutic use , Parkinson Disease/drug therapy , Animals , Butyrates/metabolism , Dysbiosis/metabolism , Gastrointestinal Microbiome/drug effects , Humans , Intestinal Mucosa/metabolism , Niacin/metabolism , Parkinson Disease/metabolism , Permeability/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...