Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 693: 149340, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38141525

ABSTRACT

In addition to the well-known monomeric globular (G-actin) and polymeric fibrillar (F-actin) forms, actin can exist in the so-called inactivated form (I-actin). Hsp70 chaperon, prefoldin, and CCT chaperonin are required to obtain native globular state. In contrast, I-actin is spontaneously formed in the absence of intracellular folding machinery. I-actin can be obtained from G-actin by elimination of divalent ion, incubation in presence of small concentrations of denaturants, and by heat exposure. Since G-actin is a quasi-stationary, thermodynamically unstable form, it can gradually transform into inactivated state in the absence of chelating/denaturating agents or heat exposure, but the transition is much slower. I-actin was shown to associate into oligomers up to the molecular weight of 14-16 G-actin monomers, though the structure of these oligomers remains uncharacterized. This study employs small-angle X-ray scattering to reveal novel insights into the oligomerization process of such spontaneously formed inactivated actin. These oligomers are differentiated from F-actin through comparative analysis, highlighting a unique oligomerization pathway.


Subject(s)
Actins , Protein Folding , Actins/metabolism , X-Rays , HSP70 Heat-Shock Proteins/metabolism , Chelating Agents
2.
Int J Mol Sci ; 24(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37445905

ABSTRACT

F-type ATP synthases play a key role in oxidative and photophosphorylation processes generating adenosine triphosphate (ATP) for most biochemical reactions in living organisms. In contrast to the mitochondrial FOF1-ATP synthases, those of chloroplasts are known to be mostly monomers with approx. 15% fraction of oligomers interacting presumably non-specifically in a thylakoid membrane. To shed light on the nature of this difference we studied interactions of the chloroplast ATP synthases using small-angle X-ray scattering (SAXS) method. Here, we report evidence of I-shaped dimerization of solubilized FOF1-ATP synthases from spinach chloroplasts at different ionic strengths. The structural data were obtained by SAXS and demonstrated dimerization in response to ionic strength. The best model describing SAXS data was two ATP-synthases connected through F1/F1' parts, presumably via their δ-subunits, forming "I" shape dimers. Such I-shaped dimers might possibly connect the neighboring lamellae in thylakoid stacks assuming that the FOF1 monomers comprising such dimers are embedded in parallel opposing stacked thylakoid membrane areas. If this type of dimerization exists in nature, it might be one of the pathways of inhibition of chloroplast FOF1-ATP synthase for preventing ATP hydrolysis in the dark, when ionic strength in plant chloroplasts is rising. Together with a redox switch inserted into a γ-subunit of chloroplast FOF1 and lateral oligomerization, an I-shaped dimerization might comprise a subtle regulatory process of ATP synthesis and stabilize the structure of thylakoid stacks in chloroplasts.


Subject(s)
Adenosine Triphosphate , Proton-Translocating ATPases , Proton-Translocating ATPases/metabolism , Adenosine Triphosphate/metabolism , Scattering, Small Angle , X-Ray Diffraction , Chloroplasts/metabolism , Nitric Oxide Synthase/metabolism , Polymers/metabolism
3.
Commun Chem ; 6(1): 88, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37130895

ABSTRACT

Proteorhodopsins (PRs), bacterial light-driven outward proton pumps comprise the first discovered and largest family of rhodopsins, they play a significant role in life on the Earth. A big remaining mystery was that up-to-date there was no described bacterial rhodopsins pumping protons at acidic pH despite the fact that bacteria live in different pH environment. Here we describe conceptually new bacterial rhodopsins which are operating as outward proton pumps at acidic pH. A comprehensive function-structure study of a representative of a new clade of proton pumping rhodopsins which we name "mirror proteorhodopsins", from Sphingomonas paucimobilis (SpaR) shows cavity/gate architecture of the proton translocation pathway rather resembling channelrhodopsins than the known rhodopsin proton pumps. Another unique property of mirror proteorhodopsins is that proton pumping is inhibited by a millimolar concentration of zinc. We also show that mirror proteorhodopsins are extensively represented in opportunistic multidrug resistant human pathogens, plant growth-promoting and zinc solubilizing bacteria. They may be of optogenetic interest.

4.
Int J Mol Sci ; 23(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35897803

ABSTRACT

Vaccination protects against COVID-19 via the spike protein receptor-binding domain (RBD)-specific antibody formation, but it also affects the innate immunity. The effects of specific antibody induction on neutrophils that can cause severe respiratory inflammation are important, though not completely investigated. In the present study, using a mouse model mimicking SARS-CoV-2 virus particle inhalation, we investigated neutrophil phenotype and activity alterations in the presence of RBD-specific antibodies. Mice were immunized with RBD and a week after a strong antibody response establishment received 100 nm particles in the RBD solution. Control mice received injections of a phosphate buffer instead of RBD. We show that the application of 100 nm particles in the RBD solution elevates neutrophil recruitment to the blood and the airways of RBD-immunized mice rather than in control mice. Analysis of bone marrow cells of mice with induced RBD-specific antibodies revealed the increased population of CXCR2+CD101+ neutrophils. These neutrophils did not demonstrate an enhanced ability of neutrophil extracellular traps (NETs) formation compared to the neutrophils from control mice. Thus, the induction of RBD-specific antibodies stimulates the activation of mature neutrophils that react to RBD-coated particles without triggering excessive inflammation.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , Humans , Inflammation , Neutrophils , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
5.
J Med Chem ; 64(22): 16464-16479, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34739758

ABSTRACT

Alzheimer's disease (AD) is a severe neurodegenerative pathology with no effective treatment known. Toxic amyloid-ß peptide (Aß) oligomers play a crucial role in AD pathogenesis. All-d-Enantiomeric peptide D3 and its derivatives were developed to disassemble and destroy cytotoxic Aß aggregates. One of the D3-like compounds is approaching phase II clinical trials; however, high-resolution details of its disease-preventing or pharmacological actions are not completely clear. We demonstrate that peptide D3 stabilizing Aß monomer dynamically interacts with the extracellular juxtamembrane region of a membrane-bound fragment of an amyloid precursor protein containing the Aß sequence. MD simulations based on NMR measurement results suggest that D3 targets the amyloidogenic region, not compromising its α-helicity and preventing intermolecular hydrogen bonding, thus creating prerequisites for inhibition of early steps of Aß conversion into ß-conformation and its toxic oligomerization. An enhanced understanding of the D3 action molecular mechanism facilitates development of effective AD treatment and prevention strategies.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Protein Precursor/metabolism , Oligopeptides/chemistry , Oligopeptides/therapeutic use , Amino Acid Sequence , Animals , Humans , Mice , Molecular Dynamics Simulation , Oligopeptides/metabolism , Protein Binding , Stereoisomerism
6.
Molecules ; 26(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068293

ABSTRACT

Alzheimer's disease is the most common type of neurodegenerative disease in the world. Genetic evidence strongly suggests that aberrant generation, aggregation, and/or clearance of neurotoxic amyloid-ß peptides (Aß) triggers the disease. Aß accumulates at the points of contact of neurons in ordered cords and fibrils, forming the so-called senile plaques. Aß isoforms of different lengths are found in healthy human brains regardless of age and appear to play a role in signaling pathways in the brain and to have neuroprotective properties at low concentrations. In recent years, different substances have been developed targeting Aß production, aggregation, interaction with other molecules, and clearance, including peptide-based drugs. Aß is a product of sequential cleavage of the membrane glycoprotein APP (amyloid precursor protein) by ß- and γ-secretases. A number of familial mutations causing an early onset of the disease have been identified in the APP, especially in its transmembrane domain. The mutations are reported to influence the production, oligomerization, and conformational behavior of Aß peptides. This review highlights the results of structural studies of the main proteins involved in Alzheimer's disease pathogenesis and the molecular mechanisms by which perspective therapeutic substances can affect Aß production and nucleation.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , Protein Conformation , Animals , Humans , Protein Aggregates , Protein Interaction Maps , Proteolysis
7.
Front Immunol ; 11: 298, 2020.
Article in English | MEDLINE | ID: mdl-32161590

ABSTRACT

People are constantly exposed to airborne fungal spores, including Aspergillus fumigatus conidia that can cause life-threatening conditions in immunocompromised patients or acute exacerbations in allergics. However, immunocompetent hosts do not exhibit mycoses or systemic inflammation, due to the sufficient but not excessive antifungal immune response that prevent fungal invasion. Intraepithelial dendritic cells (IE-DCs) of the conducting airway mucosa are located in the primary site of the inhalant pathogen entry; these cells can sense A. fumigatus conidia and maintain homeostasis. The mechanisms by which IE-DCs contribute to regulating the antifungal immune response and controlling conidia dissemination are not understood. To clarify the role of IE-DCs in the balance between pathogen sensing and immune tolerance we investigated the A. fumigatus conidia distribution in optically cleared mouse lungs and estimated the kinetics of the local phagocytic response during the course of inflammation. MHCII+ antigen-presenting cells, including IE-DCs, and CD11b+ phagocytes were identified by immunohistochemistry and three-dimensional fluorescence confocal laser-scanning microscopy of conducting airway whole-mounts. Application of A. fumigatus conidia increased the number of CD11b+ phagocytes in the conducting airway mucosa and induced the trafficking of these cells through the conducting airway wall to the luminal side of the epithelium. Some CD11b+ phagocytes internalized conidia in the conducting airway lumen. During the migration through the airway wall, CD11b+ phagocytes formed clusters. Permanently located in the airway wall IE-DCs contacted both single CD11b+ phagocytes and clusters. Based on the spatiotemporal characteristics of the interactions between IE-DCs and CD11b+ phagocytes, we provide a novel anatomical rationale for the contribution of IE-DCs to controlling the excessive phagocyte-mediated immune response rather than participating in pathogen uptake.


Subject(s)
Aspergillus fumigatus/immunology , Dendritic Cells/immunology , Host-Pathogen Interactions/physiology , Inflammation/immunology , Phagocytes/immunology , Animals , CD11b Antigen , Cell Movement , Immunity, Innate/physiology , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Phagocytosis , Spores, Fungal/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...