Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cleft Palate Craniofac J ; 57(2): 208-217, 2020 02.
Article in English | MEDLINE | ID: mdl-31422673

ABSTRACT

OBJECTIVE: Cleft lip and palate (CLP) is a common anomaly of the orofacial region. Mesenchymal stem cell (MSC) transplantation has been a focus of regenerative medicine, and its application to the repair of bone defects in patients with CLP is highly anticipated. This study investigated the potential for using MSCs to regenerate bone in a jaw cleft as well as the survival of transplanted MSCs using a canine model of CLP. DESIGN: Mesenchymal stem cells collected from the bone marrow of beagle dogs were transplanted along with carbonate hydroxyapatite into jaw clefts in beagle dogs. Mesenchymal stem cells labeled with fluorescent silica nanoparticles were also transplanted, and a histological analysis was performed 3 months later to evaluate MSC survival. RESULTS: Carbonate hydroxyapatite regeneration into bone was enhanced by cotransplantation of MSCs. The survival rate of MSCs transplanted after 3 months was 5.7%. CONCLUSIONS: Transplanted MSCs promote bone regeneration, although their survival rate is low.


Subject(s)
Mesenchymal Stem Cells , Animals , Bone Marrow , Bone Regeneration , Carbonates , Dogs , Durapatite , Humans
2.
J Oral Sci ; 61(1): 30-35, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30541990

ABSTRACT

Transplantation of mesenchymal stem cells (MSCs) has been extensively studied in the field of regenerative medicine. Bone regeneration is achieved via the interaction of osteoblasts and osteoclasts. However, the influence of MSCs on osteoclasts is unknown. The purpose of this study was to investigate the effect of MSCs on the expression of genes for osteoclast differentiation factors using qPCR after indirect co-culture of MSCs and RAW264 cells. The numbers of osteoclasts after addition of soluble receptor activator of nuclear factor kappa B (NF-κB) ligand (sRANKL) were also compared. Expression of osteoprotegerin (OPG) by MSCs was significantly elevated in co-culture over time. The differentiation of RAW264 cells into mature osteoclasts following addition of sRANKL was significantly inhibited by co-culture with MSCs. Expression of RANK, colony stimulating factor 1 receptor, NF-κB, and nuclear factor of activated T-cell cytoplasmic 1 in RAW264 cells was significantly inhibited by co-culture with MSCs. Expression of OPG protein was higher in co-culture with RAW264 cells than in MSCs alone, and the expression level was clearly higher than that of RANKL. MSCs appeared to inhibit osteoclast differentiation via expression of OPG.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells/cytology , Osteoclasts/cytology , Animals , Coculture Techniques , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred BALB C , NFATC Transcription Factors/metabolism , Osteoclasts/metabolism , Osteoprotegerin/metabolism , RANK Ligand/metabolism , RAW 264.7 Cells , Receptor, Macrophage Colony-Stimulating Factor/metabolism
3.
J Oral Sci ; 60(2): 221-225, 2018.
Article in English | MEDLINE | ID: mdl-29925706

ABSTRACT

Regeneration of tissue, including bone, using mesenchymal stem cells (MSCs) has been progressing rapidly. Regeneration of bone requires the presence of an appropriate environment and efficient chemotaxis of cells to the target site. Differentiation of MSCs into mesenchymal cells has received considerable attention, but the effect of MSCs on chemotaxis is not well understood. In this study, we investigated the effect of MSCs on chemotaxis of RAW264 cells via C-C motif chemokine ligand 2 (CCL2). Balb/c mouse bone marrow-derived MSCs and RAW264 cells, which are osteoclast precursor cells, were co-cultured without cell contact. The gene expression of CCL2 in MSCs and CC-chemokine receptor 2 (CCR2) in RAW264 cells was determined using quantitative real-time PCR. Analysis of RAW264 cell chemotaxis was performed using the Boyden chamber assay. mRNAs for CCL2 and CCR2 were significantly upregulated upon co-culture in comparison to culture of either cell type alone, and the number of chemotactic RAW264 cells was significantly increased by co-culture. MSCs enhanced the chemotaxis of RAW264 cells, possibly via CCL2-CCR2 interaction, suggesting the potential utility of MSCs for tissue regeneration.


Subject(s)
Chemotaxis , Mesenchymal Stem Cells/cytology , Osteoclasts/cytology , Animals , Bone Regeneration , Cell Differentiation , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Coculture Techniques , Gene Expression , Mice , Mice, Inbred BALB C , RAW 264.7 Cells , RNA/genetics , Real-Time Polymerase Chain Reaction , Receptors, CCR2/genetics , Receptors, CCR2/metabolism
4.
J Dent Sci ; 13(4): 354-359, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30895145

ABSTRACT

BACKGROUND/PURPOSE: Mesenchymal stem cells (MSCs) transplantation has previously been used in the field of regenerative medicine. Although bone regeneration is known to occur through the interaction between osteoblasts and osteoclasts, the effect of MSCs on osteoclasts is unknown. Therefore, the purpose of this study was to investigate the effect of MSCs on the chemotaxis of osteoclast precursor cells (RAW264 macrophage cells). MATERIALS AND METHODS: Bone defects were created in mice skulls, and MSCs and a scaffold of carbonated hydroxyapatite were transplanted into the bone defects. RAW264 cells were then transplanted into the mouse tail vein, and their dynamics were observed by an in vivo imaging system. RESULTS: The fluorescent intensity of the MSCs transplant group at the bone defect region was significantly higher on days 3, 5, and 7 compared with the MSCs non-transplant group. CONCLUSION: Increased RAW264 chemotaxis to the bone defect region occurred following the simultaneous implantation of MSCs in the skull defect.

6.
Cleft Palate Craniofac J ; 52(4): 386-94, 2015 07.
Article in English | MEDLINE | ID: mdl-23782420

ABSTRACT

OBJECTIVE: The aim of this study was to examine experimental tooth movement into regenerated bone in alveolar cleft with mesenchymal stem cells and a granulated carbonated hydroxyapatite scaffold. DESIGN: An artificial bone defect was created bilaterally in upper incisor regions of beagle dogs to simulate alveolar clefts in patients with cleft palate. The mesenchymal stem cells derived from the iliac bone marrow were cultured and transplanted with carbonated hydroxyapatite into the bone defect area. Carbonated hydroxyapatite alone was transplanted on the control side. Six months after the transplantation, multi-bracket appliances were attached to the lateral incisors and canines on both sides of the maxilla to exert an orthodontic force of 100 × g using an elastic chain. The distance between lateral incisor and canine was measured, and standardized x-ray images were taken every month. The tissue after tooth movement was evaluated by histological observation. RESULTS: The experimental tooth movement, accompanied by resorption of regenerated bone and new bone formation, was achieved on the experimental and control sides. Although there was no difference in the amount of tooth movement obtained on the experimental and control sides during the 6-month experimental period, the rate of tooth movement varied on the control side; whereas, the rate was consistent on the experimental side. Root resorption of the tooth was observed on the control side in one dog. CONCLUSION: It is suggested that mesenchymal/carbonated hydroxyapatite transplantation therapy has great potential as a new treatment modality for bone regeneration in patients with cleft palate.


Subject(s)
Cleft Palate/surgery , Mesenchymal Stem Cell Transplantation , Tooth Movement Techniques/methods , Animals , Bone Regeneration , Cells, Cultured , Disease Models, Animal , Dogs , Durapatite , Female
7.
Int J Dent ; 2012: 352510, 2012.
Article in English | MEDLINE | ID: mdl-22536240

ABSTRACT

Objectives of the Study. Cleft lip and palate (CLP) is a prevalent congenital anomaly in the orofacial region. Autogenous iliac bone grafting has been frequently employed for the closure of bone defects at the jaw cleft site. Since the related surgical procedures are quite invasive for patients, it is of great importance to develop a new less invasive technique. The aim of this study was to examine bone regeneration with mesenchyme stem cells (MSCs) for the treatment of bone defect in artificially created jaw cleft in dogs. Materials and Methods. A bone defect was prepared bilaterally in the upper incisor regions of beagle dogs. MSCs derived from iliac bone marrow were cultured and transplanted with carbonated hydroxyapatite (CAP) particles into the bone defect area. The bone regeneration was evaluated by standardized occlusal X-ray examination and histological observation. Results. Six months after the transplantation, perfect closure of the jaw cleft was achieved on the experimental side. The X-ray and histological examination revealed that the regenerated bone on the experimental side was almost equivalent to the original bone adjoining the jaw cleft. Conclusion. It was suggested that the application of MSCs with CAP particles can become a new treatment modality for bone regeneration for CLP patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...