Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 354(3): 269-78, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26126534

ABSTRACT

Angiogenesis, the formation of new blood vessels from pre-existing vessels, is essential for the growth and metastasis of tumors. In this study, we found that l-carbocisteine, a widely used expectorant, potently inhibits angiogenesis in vitro and in vivo. An in vivo Matrigel plug assay revealed that l-carbocisteine (2.5 mg/kg i.p. twice daily) significantly inhibited vascular endothelial growth factor (VEGF)-induced angiogenesis. l-Carbocisteine also suppressed VEGF-stimulated proliferation, migration, and formation of capillary-like structures of human umbilical vein endothelial cells (HUVECs). We examined the signaling pathways affected in VEGF-stimulated HUVECs, and found that l-carbocisteine significantly inhibited VEGF-induced phosphorylation of phospholipase C (PLC) γ, protein kinase C (PKC) µ, and extracellular signal-related kinases (ERK) 1/2, which have been shown to be essential for angiogenesis. However, these inhibitory effects of l-carbocisteine were not observed in the HeLa human cervical cancer cell line. An in vivo study of Colon-26 tumor-bearing mice found that tumor volumes were significantly smaller in mice treated with l-carbocisteine (150 mg/kg administered orally twice daily) in comparison with vehicle-treated mice. However, l-carbocisteine had no direct effect on Colon-26 cell proliferation or ERK activation. Collectively, our results suggest that l-carbocisteine inhibits tumor angiogenesis by suppressing PLCγ/PKC/ERK signaling.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Carbocysteine/pharmacology , Cell Proliferation/drug effects , Neovascularization, Pathologic/drug therapy , Animals , Cell Line , Cell Line, Tumor , Cell Movement/drug effects , Expectorants/pharmacology , HeLa Cells , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , MAP Kinase Signaling System/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neovascularization, Pathologic/metabolism , Phospholipase C gamma/metabolism , Phosphorylation/drug effects , Protein Kinase C/metabolism , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...