Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Nephrol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844335

ABSTRACT

BACKGROUND: Glomerular endothelial cells are recognized to be important for maintaining the glomerular filtration barrier. ADGRF5, an adhesion G protein-coupled receptor, has been suggested to be involved in endothelial cell function. However, the role of ADGRF5 in the glomerular filtration barrier integrity remains elusive. METHODS: Cellular expression of ADGRF5 in mouse glomerulus was determined by histological analyses. The impact of ADGRF5 deletion on the glomerular morphology, kidney function, and glomerular endothelial gene/protein expression was then analyzed using ADGRF5 knockout (Adgrf5-/-) mice and human primary glomerular endothelial cells. RESULTS: ADGRF5 was specifically expressed in the capillary endothelial cells within the glomerulus. Adgrf5-/- mice developed albuminuria and impaired kidney function with morphological defects in the glomeruli, namely glomerular hypertrophy, glomerular basement membrane splitting and thickening, diaphragmed fenestration and detachment of the glomerular endothelial cells, and mesangial interposition. These defects were accompanied by the altered expression of genes responsible for glomerular basement membrane organization (type IV collagens and laminins) and Krüppel-like factor 2 (Klf2) in glomerular endothelial cells. Moreover, ADGRF5 knockdown decreased COL4A3 and COL4A4 expression and increased KLF2 expression in human primary glomerular endothelial cells. CONCLUSIONS: The loss of ADGRF5 resulted in altered gene expression in glomerular endothelial cells, and perturbed the structure and permselectivity of the glomerular filtration barrier.

2.
Respir Res ; 20(1): 11, 2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30654796

ABSTRACT

BACKGROUND: Adhesion G-protein coupled receptor F5 (ADGRF5) was recently identified as an essential regulator of pulmonary surfactant homeostasis in alveolar type II cells. We previously showed that in addition to abnormal surfactant accumulation, Adgrf5-deficient (Adgrf5-/-) mice exhibit emphysema-like signs, suggesting a possible role for ADGRF5 in immune regulation. Here, we extended the phenotypic analysis of Adgrf5-/- mice to help understand its biological role in the lung, and especially in immune regulation. METHODS: Histological features of lungs were evaluated by Alcian blue and Masson's trichrome staining. Quantitative real-time PCR (qPCR) and western blot analyses were performed to analyze the differential expression of genes/proteins related to airway inflammation in lungs between wildtype and Adgrf5-/- mice. Acid-base status was assessed by performing blood gas tests and urine pH measurements. Inflammatory cell counting was performed using Giemsa-stained bronchoalveolar lavage cells. Serum IgE concentrations were determined by enzyme-linked immunosorbent assay. The expression of Ccl2, S100a8, S100a9, and Saa3 in primary lung endothelial cells (ECs) was determined by qPCR and/or western blotting. Finally, the effect of administrating RS504393 to 2-week-old Adgrf5-/- mice on gene expression in the lungs was analyzed by qPCR. RESULTS: Adgrf5-/- mice exhibited several features of chronic airway inflammation (mucous cell metaplasia, mucus hyperproduction, subepithelial fibrosis, respiratory acidosis, high serum IgE, mast cell accumulation, and neutrophilia) in parallel with elevated expression of genes involved in mucous cell metaplasia (Muc5ac, Muc5b, Slc26a4, and Clca1), fibrosis (Tgfb1, Col1a1, Fn1, and Tnc), and type 2 immune response (Il4, Il5, Il13, IL-25, and IL-33) at 12 and/or 30 weeks of age. In contrast, mRNA expression of Ccl2, S100a8, and S100a9 was upregulated in embryonic or neonatal Adgrf5-/- lungs as well as in lung ECs of Adgrf5-/- mice at 1 week of age. RS504393 treatment suppressed the upregulation of S100a8, S100a9, Slc26a4, and Il5 in Adgrf5-/- lungs. CONCLUSIONS: Targeted disruption of ADGRF5 results in the development of airway inflammation, which is likely mediated by the type 2 immune response and possibly CCL2-mediated inflammation. ADGRF5 also has a potential role in the regulation of genes encoding CCL2 in lung ECs, thereby maintaining immune homeostasis.


Subject(s)
Bronchitis/metabolism , Chemokine CCL2/biosynthesis , Endothelial Cells/metabolism , Inflammation Mediators/metabolism , Lung/metabolism , Receptors, G-Protein-Coupled/deficiency , Animals , Bronchitis/pathology , Chemokine CCL2/genetics , Endothelial Cells/pathology , Gene Expression , Humans , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...