Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Physiol ; 46(6): 858-69, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15821023

ABSTRACT

To determine the role of alpha-amylase isoform I-1 in the degradation of starch in rice leaf chloroplasts, we generated a series of transgenic rice plants with suppressed expression or overexpression of alpha-amylase I-1. In the lines with suppressed expression of alpha-amylase I-1 at both the mRNA and protein levels, seed germination and seedling growth were markedly delayed in comparison with those in the wild-type plants. However, the growth retardation was overcome by supplementation of sugars. Interestingly, a significant increase of starch accumulation in the young leaf tissues was observed under a sugar-supplemented condition. In contrast, the starch content of leaves was reduced in the plants overexpressing alpha-amylase I-1. In immunocytochemical analysis with specific anti-alpha-amylase I-1 antiserum, immuno-gold particles deposited in the chloroplasts and extracellular space in young leaf cells. We further examined the expression and targeting of alpha-amylase I-1 fused with the green fluorescent protein in re-differentiated green cells, and showed that the fluorescence of the expressed fusion protein co-localized with the chlorophyll autofluorescence in the transgenic cells. In addition, mature protein species of alpha-amylase I-1 bearing an oligosaccharide side chain were detected in the isolated chloroplasts. Based on these results, we concluded that alpha-amylase I-1 targets the chloroplasts through the endoplasmic reticulum-Golgi system and plays a significant role in the starch degradation in rice leaves.


Subject(s)
Oryza/metabolism , Starch/metabolism , alpha-Amylases/metabolism , Chloroplasts/metabolism , Extracellular Space/enzymology , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Microscopy, Immunoelectron , Models, Biological , Oryza/genetics , Oryza/growth & development , Plant Leaves/enzymology , Plants, Genetically Modified , Plastids/enzymology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , alpha-Amylases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...