Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 105: 71-81, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28479347

ABSTRACT

Physicochemical characterization of steroid analogs (triazole, tetrazole, toluenesulfonylhydrazide, nitrile, dinitrile and dione) is considered to be a very important step in further drug selection. This study applies to the determination of lipophilicity of previously synthesized steroid derivatives using reversed-phase high-performance liquid chromatography (RP HPLC). Chemometric aspect of chromatographic lipophilicity is given throughout multiple linear regression (MLR) quantitative structure-retention relationships (QSRR) approach. Minimal inhibitory concentration (MIC) is determined for two steroid derivatives possessing antimicrobial activity against Staphylococcus aureus. Molecular docking study was performed in order to identify the compound with the most promising potential as human cytochrome P450 CYP17A1inhibitor. Identified 3ß-hydroxyandrost-5-eno[16,17-d]-1,2,3-triazole (I.2.) could be recommended for further trials for anticancer drugs and subjected to the absorption, distribution, metabolism, excretion and toxicity (ADMET) evaluation.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Steroids , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Candida albicans/drug effects , Candida albicans/growth & development , Cell Line, Tumor , Chromatography, Reverse-Phase/methods , Escherichia coli/drug effects , Escherichia coli/growth & development , Humans , Linear Models , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Steroids/chemistry , Steroids/pharmacology
2.
J Pharm Biomed Anal ; 134: 27-35, 2017 Feb 05.
Article in English | MEDLINE | ID: mdl-27871054

ABSTRACT

The present paper deals with chromatographic lipophilicity determination of twenty-nine selected steroid derivatives using reversed-phase high-performance liquid chromatography (RP HPLC) combined with two mobile phase, acetonitrile-water and methanol-water. Chromatographic behavior of four groups (triazole and tetrazole, toluenesulfonylhydrazide, nitrile and dinitrile and dione) of selected steroid derivatives was studied. Investigated compounds were grouped using principal component analysis (PCA) according to their logk values for both mobile phases. Grouping was in the very good accordance with the polarity and lipophilicity of the investigated compounds. QSRR (quantitative structure-retention relationship) approach was used to model chromatographic lipophilicity behavior using molecular descriptors. Modeling was performed using linear regression (LR) and multiple linear regression (MLR) methods. The most influential molecular descriptors were lipophilicity descriptors that are important for molecules ability to pass through biological membranes and geometrical descriptors. All established LR-QSRR and MLR-QSRR models were statistically validated by standards, cross- and external validation parameters as well as with two graphical methods. According to all these assessments, MLR models were better for chromatographic lipophilicity prediction. It was shown that chromatographic systems with methanol-water were better for modeling of logk than systems with acetonitrile-water, as well as the systems that contained lower volume fractions of organic component in mobile phase. Modeling was performed in order to obtain lipophilicity profiles of investigated compounds as future drug candidates of biomedical importance.


Subject(s)
Chromatography, Reverse-Phase/methods , Models, Molecular , Steroids/analysis , Steroids/chemistry , Chromatography, High Pressure Liquid/methods , Principal Component Analysis/methods , Quantitative Structure-Activity Relationship
3.
Steroids ; 94: 31-40, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25541058

ABSTRACT

A convenient microwave assisted solvent free synthesis as well as conventional synthesis of salicyloyloxy and 2-methoxybenzoyloxy androstane and stigmastane derivatives 7-19 from appropriate steroidal precursors 1-6 and methyl salicylate is reported. The microwave assisted synthesis in most cases was more successful regarding reaction time and product yields. It was more environmentally friendly too, compared to the conventional method. The antioxidant activity and cytotoxicity of the synthesized derivatives were evaluated in a series of in vitro tests, as well as their inhibition potency exerted on hydroxysteroid dehydrogenase enzymes (Δ(5)-3ßHSD, 17ßHSD2 and 17ßHSD3). All of the tested compounds were effective in OH radical neutralization, particularly compounds 9, 11 and 14, which exhibited about 100-fold stronger activity than commercial antioxidants BHT and BHA. In DPPH radical scavenging new compounds were effective, but less than reference compounds. 2-Methoxybenzoyl ester 10 exhibited strong cytotoxicity against MDA-MB-231 cells. Most compounds inhibited growth of PC-3 cells, where salicyloyloxy stigmastane derivative 15 showed the best inhibition potency. Compounds 9, 10 and 11 were the best inhibitors of 17ßHSD2 enzyme. X-ray structure analysis and molecular mechanics calculations (MMC) were performed for the best cytotoxic agents, compounds 10 and 15. A comparison of crystal and MMC structures of compounds 10 and 15 revealed that their molecules conformations are stable even after releasing of the influence of crystalline field and that the influence of crystal packing on molecular conformation is not predominant.


Subject(s)
Androstanes/chemical synthesis , Free Radical Scavengers/chemical synthesis , Hydroxybenzoate Ethers/chemical synthesis , Salicylates/chemical synthesis , Androstanes/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Free Radical Scavengers/pharmacology , Humans , Hydroxybenzoate Ethers/pharmacology , Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Inhibitory Concentration 50 , Microwaves , Molecular Conformation , Salicylates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...