Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Biomaterials ; 310: 122621, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38815455

ABSTRACT

In vitro models of the human liver are promising alternatives to animal tests for drug development. Currently, primary human hepatocytes (PHHs) are preferred for pharmacokinetic and cytotoxicity tests. However, they are unable to recapitulate the flow of bile in hepatobiliary clearance owing to the lack of bile ducts, leading to the limitation of bile analysis. To address the issue, a liver organoid culture system that has a functional bile duct network is desired. In this study, we aimed to generate human iPSC-derived hepatobiliary organoids (hHBOs) consisting of hepatocytes and bile ducts. The two-step differentiation process under 2D and semi-3D culture conditions promoted the maturation of hHBOs on culture plates, in which hepatocyte clusters were covered with monolayered biliary tubes. We demonstrated that the hHBOs reproduced the flow of bile containing a fluorescent bile acid analog or medicinal drugs from hepatocytes into bile ducts via bile canaliculi. Furthermore, the hHBOs exhibited pathophysiological responses to troglitazone, such as cholestasis and cytotoxicity. Because the hHBOs can recapitulate the function of bile ducts in hepatobiliary clearance, they are suitable as a liver disease model and would be a novel in vitro platform system for pharmaceutical research use.


Subject(s)
Bile Ducts , Hepatocytes , Induced Pluripotent Stem Cells , Organoids , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Organoids/drug effects , Organoids/cytology , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/cytology , Cell Differentiation/drug effects , Pharmaceutical Research/methods
2.
Endocr J ; 71(3): 253-264, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38143085

ABSTRACT

Maintenance of islet function after in vitro culture is crucial for both transplantation and research. Here we evaluated the effects of encapsulation in alginate fiber on the function of human islets which were distributed by the Alberta Islet Distribution Program. Encapsulated human islets from 15 deceased donors were cultured under 5.5 or 25 mM glucose conditions in vitro. The amounts of C-peptide and glucagon secreted from encapsulated islets into the culture media were measured periodically, and immunohistochemical studies were performed. Encapsulated islets maintained C-peptide and glucagon secretion for more than 75 days in 5 cases; in two cases, their secretion was also successfully detected even on day 180. α- and ß-cell composition and ß-cell survival in islets were unaltered in the fiber after 75 or 180 days of culture. The encapsulated islets cultured with 5.5 mM glucose, but not those with 25 mM glucose, exhibited glucose responsiveness of C-peptide secretion until day 180. We demonstrate that alginate encapsulation enabled human islets to maintain their viability and glucose responsiveness of C-peptide secretion after long-term in vitro culture, potentially for more than for 180 days.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Humans , Glucagon/pharmacology , C-Peptide , Alginates/pharmacology , Glucose/pharmacology , Insulin/pharmacology
3.
Heliyon ; 9(9): e19972, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809993

ABSTRACT

Human pluripotent stem cell (hPSCs) derived-pancreatic islets (hSC-islets) are good candidates for cell replacement therapy for patients with diabetes as substitutes for deceased donor-derived islets, because they are pluripotent and have infinite proliferation potential. Grafted hSC-islets ameliorate hyperglycemia in diabetic mice; however, several weeks are needed to normalize the hyperglycemia. These data suggest hSC-islets require maturation, but their maturation process in vivo is not yet fully understood. In this study, we utilized two kinds of streptozotocin (STZ)-induced diabetes model mice by changing the administration timing in order to examine the time course of maturation of hSC-islets and the effects of hyperglycemia on their maturation. We found no hyperglycemia in immune-compromised mice when hSC-islets had been transplanted under their kidney capsules in advance, and STZ was administered 4 weeks after transplantation. Of note, the blood glucose levels of those mice were stably maintained under 100 mg/dl 10 weeks after transplantation; this is lower than the mouse glycemic set point (120-150 mg/dl), suggesting that hSC-islets control blood glucose levels to the human glycemic set point. We confirmed that gene expression of maturation markers of pancreatic beta cells tended to upregulate during 4 weeks after transplantation. Periodical histological analysis revealed that revascularization was observed as early as 1 week after transplantation, but reinnervation in the grafted hSC-islets was not detected at all, even 15 weeks after transplantation. In conclusion, our hSC-islets need at least 4 weeks to mature, and the human glycemic set point is a good index for evaluating ultimate maturity for hSC-islets in vivo.

4.
Regen Ther ; 24: 472-478, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37772129

ABSTRACT

Introduction: The prevalence of diabetes mellitus is increasing globally, including in Japan. Patients with diabetes often experience microangiopathy and macroangiopathy, which lead to difficult-to-treat foot ulcers and diabetic gangrene. Conventional cellular therapies have limited safety and are invasive. In this study, we investigated the use of cultured autologous mesenchymal stromal cells derived from the bone marrow and grown in platelet-rich plasma as a potential treatment for diabetic complications. Methods: A prospective clinical trial was conducted to assess safety as the primary endpoint and efficacy as the secondary endpoint of the aforementioned therapy in five patients with critical limb ischemia, with or without hemodialysis. Results: Five patients with critical limb ischemia were enrolled between 2016 and 2019, three of whom underwent hemodialysis. Platelet-rich plasma was obtained from 288 ± 39.6 mL of blood/patient, yielding 31.6 ± 1.67 mL of platelet-rich plasma. Bone marrow aspiration yielded 18.4 ± 4.77 mL/patient, and 4.64 ± 1.51 × 107 cells were incubated for 16 ± 2.8 days to obtain 3.26 ± 0.33 × 107 mesenchymal stromal cells. Although several adverse events were observed, none were directly attributed to cell therapy. Clinical severity, as assessed by both the Fontaine stage and Rutherford category, improved significantly following therapy. This improvement was accompanied by enhancements in the 6-min walking distance, dorsal skin perfusion pressure, ankle transcutaneous partial oxygen pressure, and ankle brachial pressure index. Conclusion: Autologous angiogenic therapy with cultured mesenchymal stromal cells derived from the bone marrow and grown in platelet-rich plasma is a safe and feasible, and was expected as a potential treatment for critical limb ischemia.

5.
Microbiol Spectr ; 10(6): e0349022, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36314907

ABSTRACT

We newly generated two human induced pluripotent stem cell (hiPSC)-derived spheroid lines, termed Spheroids_4MACE2-TMPRSS2 and Spheroids_15M63ACE2-TMPRSS2, both of which express angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2), which are critical for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Both spheroids were highly susceptible to SARS-CoV-2 infection, and two representative anti-SARS-CoV-2 agents, remdesivir and 5h (an inhibitor of SARS-CoV-2's main protease), inhibited the infectivity and replication of SARS-CoV-2 in a dose-dependent manner, suggesting that these human-derived induced spheroids should serve as valuable target cells for the evaluation of anti-SARS-CoV-2 activity. IMPORTANCE The hiPSC-derived spheroids we generated are more expensive to obtain than the human cell lines currently available for anti-SARS-CoV-2 drug evaluation, such as Calu-3 cells; however, the spheroids have better infection susceptibility than the existing human cell lines. Although we are cognizant that there are human lung (and colonic) organoid models for the study of SARS-CoV-2, the production of those organoids is greatly more costly and time consuming than the generation of human iPSC-derived spheroid cells. Thus, the addition of human iPSC-derived spheroids for anti-SARS-CoV-2 drug evaluation studies could provide the opportunity for more comprehensive interpretation of the antiviral activity of compounds against SARS-CoV-2.


Subject(s)
Induced Pluripotent Stem Cells , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , COVID-19 , Drug Evaluation , Induced Pluripotent Stem Cells/metabolism , SARS-CoV-2/drug effects , Serine
6.
J Dermatol Sci ; 106(2): 78-85, 2022 May.
Article in English | MEDLINE | ID: mdl-35440400

ABSTRACT

BACKGROUND: Dermal papilla cells (DPCs) are one type of mesenchymal cells; they play a key role on hair follicle induction. Their hair inductivity and proliferation abilities are rapidly lost during the 2-dimensional culture. Cell senescence is induced by inadequate culture conditions and telomere shortening. We previously reported that overexpression of TERT coding telomerase reverse transcriptase and BMI1 coding human B-cell-specific Moloney murine leukemia virus insertion region 1 (BMI1) avoided senescence of murine DPC and restored hair inductive activity. OBJECTIVE: To evaluate the function of TERT and BMI1 in the human DPCs (hDPCs). METHODS: Cultured hDPCs obtained from human scalp hair were transduced with TERT alone (hDP-T), BMI1 alone (hDP-B), both TERT and BMI1 (hDP-TB) and empty vector (hDP-E). The hair inductive activity of those cells was assessed by chamber assay in vivo. Gene expressions were analyzed by quantitative PCR (q-PCR). RESULTS: hDP-TB proliferated more than hDP-T and hDP-B in vitro and only hDP-TB showed hair inductivity in vivo. Moreover, the expressions of VCAN, CTNNB1, LEF1, FGF7 and VEGFA in hDP-TB were elevated compared to those in hDP-E. CONCLUSION: Overexpression of both TERT and BMI1 extends the life span of cultured hDPCs and ameliorates their hair inducing ability on mouse hair follicles.


Subject(s)
Hair Follicle , Telomerase , Animals , Animals, Genetically Modified , Cells, Cultured , Cellular Senescence/genetics , Hair/metabolism , Hair Follicle/metabolism , Humans , Mice , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Proto-Oncogene Proteins/metabolism , Scalp/metabolism , Telomerase/genetics , Telomerase/metabolism
7.
J Invest Dermatol ; 142(6): 1692-1702.e3, 2022 06.
Article in English | MEDLINE | ID: mdl-34780714

ABSTRACT

Lymphatic transport plays an important role in coordinating local immune responses. However, the biologic effects of impaired lymphatic flow in vivo are not fully understood. In this study, we investigated the roles of the lymphatic system in skin carcinogenesis and psoriasis-like inflammation using k-cyclin transgenic (kCYC+/-) mice, which demonstrate severe lymphatic dysfunction. kCYC+/- mice showed augmented tumor growth in the two-stage skin carcinogenesis model and severe clinical scores in imiquimod-induced psoriasis-like skin inflammation compared with wild-type mice. Although mRNA levels of inflammatory cytokines in skin after topical application of 12-O-tetradecanoylphorbol-13-acetate or imiquimod were comparable between kCYC+/- and wild-type mice, protein levels of inflammatory cytokines, such as IL-17A, IL-22, and IL-23, were significantly upregulated in kCYC+/- mice in both models. Consistently, signal transducer and activator of transcription 3 pathway and NF-κB signaling were augmented in epidermal keratinocytes in kCYC+/- mice. These results suggest that lymphatic dysfunction in kCYC+/- mice caused accumulation of inflammatory cytokines, leading to the exacerbation of two-stage skin carcinogenesis and imiquimod-induced psoriasis-like skin inflammation. These findings add insight into the clinical problems of secondary malignancies and inflammatory dermatoses that may occur with extremity lymphedema.


Subject(s)
Dermatitis , Psoriasis , Animals , Carcinogenesis/pathology , Cytokines/metabolism , Dermatitis/pathology , Disease Models, Animal , Imiquimod/pharmacology , Inflammation/pathology , Lymphatic System/metabolism , Mice , Mice, Inbred BALB C , Psoriasis/chemically induced , Psoriasis/genetics , Skin/pathology
8.
iScience ; 24(4): 102309, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33997668

ABSTRACT

Cell therapy using human-stem-cell-derived pancreatic beta cells (hSC-ßs) is a potential treatment method for type 1 diabetes mellitus (T1D). For therapeutic safety, hSC-ßs need encapsulation in grafts that are scalable and retrievable. In this study, we developed a lotus-root-shaped cell-encapsulated construct (LENCON) as a graft that can be retrieved after long-term hSC-ß transplantation. This graft had six multicores encapsulating hSC-ßs located within 1 mm from the edge. It controlled the recipient blood glucose levels for a long-term, following transplantation in immunodeficient diabetic mice. LENCON xenotransplanted into immunocompetent mice exhibited retrievability and maintained the functionality of hSC-ßs for over 1 year after transplantation. We believe that LENCON can contribute to the treatment of T1D through long-term transplantation of hSC-ßs and in many other forms of cell therapy.

9.
PLoS One ; 16(1): e0245204, 2021.
Article in English | MEDLINE | ID: mdl-33428669

ABSTRACT

Diabetes mellitus is caused by breakdown of blood glucose homeostasis, which is maintained by an exquisite balance between insulin and glucagon produced respectively by pancreatic beta cells and alpha cells. However, little is known about the mechanism of inducing glucagon secretion from human alpha cells. Many methods for generating pancreatic beta cells from human pluripotent stem cells (hPSCs) have been reported, but only two papers have reported generation of pancreatic alpha cells from hPSCs. Because NKX6.1 has been suggested as a very important gene for determining cell fate between pancreatic beta and alpha cells, we searched for the factors affecting expression of NKX6.1 in our beta cell differentiation protocols. We found that BMP antagonism and activation of retinoic acid signaling at stage 2 (from definitive endoderm to primitive gut tube) effectively suppressed NKX6.1 expression at later stages. Using two different hPSCs lines, treatment with BMP signaling inhibitor (LDN193189) and retinoic acid agonist (EC23) at Stage 2 reduced NKX6.1 expression and allowed differentiation of almost all cells into pancreatic alpha cells in vivo after transplantation under a kidney capsule. Our study demonstrated that the cell fate of pancreatic cells can be controlled by adjusting the expression level of NKX6.1 with proper timing of BMP antagonism and activation of retinoic acid signaling during the pancreatic differentiation process. Our method is useful for efficient induction of pancreatic alpha cells from hPSCs.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Glucagon-Secreting Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Signal Transduction/drug effects , Tretinoin/pharmacology , Animals , Cell Line , Glucagon-Secreting Cells/transplantation , Heterografts , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID
10.
J Dermatol ; 48(2): 219-222, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33063335

ABSTRACT

The formation and deposition of immune complexes (IC) containing immunoglobulin (Ig)G antibodies induces an acute inflammatory response with tissue injury. One of the experimental models of IC-related vasculitis is the cutaneous reverse passive Arthus reaction, in which IgG antibodies are injected i.d., followed immediately by the i.v. application of the corresponding antigen. This reaction is characterized by edema, hemorrhage and neutrophil infiltration. To assess the role of the anti-inflammatory cytokine interleukin (IL)-10 in IC-related vasculitis, we investigated the cutaneous Arthus reaction using IL-10 knockout (IL-10KO) mice. Edema, which was quantified macroscopically by measuring the vascular leakage of Evans blue dye at 4 h after IC challenge, was significantly increased in IL-10KO mice compared with wild-type mice. In addition, hemorrhage, which was assessed by the average diameter of purpuric spots at 8 h after IC challenge, was enhanced significantly in IL-10KO mice compared with wild-type mice. Histological examination showed that the number of extravascular neutrophils was significantly increased in IL-10KO mice compared with wild-type mice at 4 and 8 h after IC challenge. Analysis of pro-inflammatory cytokine mRNA expression showed that IL-6 mRNA levels were significantly increased in IL-10KO mice compared with wild-type mice at 4 and 8 h after IC challenge. These results showed that IC-induced inflammation and vascular damage were significantly enhanced in the absence of IL-10. Thus, IL-10 may limit tissue disruption by suppressing the excessive infiltration of neutrophils and cytokine expression in a mouse model of type III vasculitis.


Subject(s)
Arthus Reaction , Interleukin-10 , Animals , Antigen-Antibody Complex , Arthus Reaction/drug therapy , Arthus Reaction/genetics , Cytokines , Interleukin-10/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Skin
11.
Cells ; 9(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32492819

ABSTRACT

To identify factors involved in the earliest phase of the differentiation of human embryonic stem cells (hESCs) into brown adipocytes (BAs), we performed multi-time point microarray analyses. We found that growth/differentiation factor 15 (GDF15) expressions were specifically upregulated within three days of differentiation, when expressions of immature hESC markers were sustained. Although GDF15 expressions continued to increase in the subsequent differentiation phases, GDF15-deficient hESCs differentiated into mature BAs (Day 10) without apparent abnormalities. In addition, GDF15-deficient mice had normal brown adipose tissue (BAT) and were metabolically healthy. Unexpectedly, we found that interleukin-6 (IL6) expression was significantly lowered in the BAT of GDF15-/- mice. In addition, GDF15-/- hESCs showed abortive IL6 expressions in the later phase (>Day 6) of the differentiation. Interestingly, GDF15 expression was markedly repressed throughout the whole course of the differentiation of IL6-/- hESCs into BAs, indicating IL6 is essential for the induction of GDF15 in the differentiation of hESCs. Finally, intraperitoneally transplanted BAT grafts of GDF15-/- donor mice, but not those of wild-type (WT) mice, failed in the long-term survival (12 weeks) in GDF15-/- recipient mice. Collectively, GDF15 is required for long-term survival of BAT grafts by creating a mutual gene induction loop with IL6.


Subject(s)
Adipose Tissue, Brown/transplantation , Growth Differentiation Factor 15/metabolism , Interleukin-6/metabolism , Tissue Survival/physiology , Adipocytes, Brown/metabolism , Animals , Cell Differentiation/genetics , Cell Line , Gene Expression Regulation , Growth Differentiation Factor 15/deficiency , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Mice, Knockout , Models, Biological
12.
J Dermatol ; 47(5): 554-558, 2020 May.
Article in English | MEDLINE | ID: mdl-32157724

ABSTRACT

Mal de Meleda (MDM) is a rare, autosomal recessive form of palmoplantar keratoderma due to mutations in the gene, encoding for secreted lymphocyte antigen 6/urokinase-type plasminogen activator receptor related protein 1 (SLURP1). We report a four-year-old Taiwanese MDM female case whose biopsy specimen of hyperkeratotic lesions showed abnormal keratinization and cutaneous inflammation with characteristic transmission electron microscopic (TEM) findings and immunostaining results. The patient presented with pruritic and severely hyperkeratotic plaques on the bilateral palms and soles whichwere fringed with erythematous scaly areas. A homozygous c.256 G>A mutation, predicting a conversion of p.Gly86Arg, in SLURP1gene was detected. Histopathological examinations showed marked hyperkeratosis, acanthosis and hypergranulosis in the epidermis, accompanied by perivascular lymphocytic infiltrates in the dermis. The whole layers of the epidermis and perivascular infiltrates of the dermis were stained positive with anti-tumor necrosis factor alpha (TNFα) antibody in the biopsy specimen from the sole and the ankle. TEM examination of the biopsy specimen from the plantar hyperkeratotic plaque showed various-sized vacuoles surrounding nuclei of many keratinocytes in the spinous layer. In addition, there were numerous irregular keratohyaline granules in the granular layer. Several microorganisms and many lipid-like droplets were found in the thickened cornified layer. SLURP1 protein is known as a marker of late differentiation, predominantly expressed in the granular layer, and also known to have an inhibitory effect on TNFα release. Our results exhibited excessive TNFα expression in keratinocytes and perivascular infiltrates of the dermis, and several characteristic morphological observations of keratinocytes in MDM.


Subject(s)
Antigens, Ly/genetics , Keratinocytes/pathology , Keratoderma, Palmoplantar/diagnosis , Skin/immunology , Urokinase-Type Plasminogen Activator/genetics , Biopsy , Child, Preschool , DNA Mutational Analysis , Female , Foot , Hand , Homozygote , Humans , Keratinocytes/immunology , Keratoderma, Palmoplantar/genetics , Keratoderma, Palmoplantar/immunology , Keratoderma, Palmoplantar/pathology , Microscopy, Electron, Transmission , Mutation , Pedigree , Skin/cytology , Skin/pathology , Skin/ultrastructure , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
13.
Sci Rep ; 9(1): 14546, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601983

ABSTRACT

Common marmosets have attracted considerable attention as a small standard primate model in biomedical research. However, no marmoset diabetes model is available. Here, we established a marmoset diabetes model via the combination of partial pancreatectomy and intravenous streptozotocin (STZ). A partial pancreatectomy was performed in 11 common marmosets and multiple STZ doses were intravenously administered. Diabetes was diagnosed upon sustained hyperglycaemia (nonfasting blood glucose level >200 mg/dl). Blood glucose and biochemistry were periodically assessed, in addition to glucose tolerance testing, continual blood glucose determination using a continuous glucose monitoring system, urine testing and histological evaluation. In 8 of the 11 animals (73%), diabetes mellitus was induced. The diabetic marmosets also showed abnormal intravenous and oral glucose tolerance test results. Blood glucose levels decreased in response to human insulin administration. The hyperglycaemic state was irreversible and persisted for more than 3 months, and the animals' condition was manageable via daily insulin administration. Thus, diabetes can be successfully induced and maintained in the common marmoset via partial pancreatectomy and STZ administration. This protocol effectively generates a valuable animal model for studying disease pathogenesis, risk factors and therapeutic interventions, including islet transplantation.


Subject(s)
Callithrix , Diabetes Mellitus, Type 1/physiopathology , Disease Models, Animal , Animals , Blood Glucose/analysis , Diabetes Mellitus, Type 1/genetics , Female , Glucose Tolerance Test , Humans , Hyperglycemia/blood , Insulin/administration & dosage , Male , Pancreatectomy , Risk Factors
14.
Regen Ther ; 11: 65-72, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31193869

ABSTRACT

INTRODUCTION: Although immunosuppressants are required for current islet transplantation for type 1 diabetic patients, many papers have already reported encapsulation devices for islets to avoid immunological attack. The aim of this study is to determine the optimal number of cells and optimal transplantation site for human iPS-derived islet-like cells encapsulated in alginate fiber using diabetic model mice. METHODS: We used a suspension culture system for inducing islet-like cells from human iPS cells throughout the islet differentiation process. Islet-like spheroids were encapsulated in the alginate fiber, and cell transplantation experiments were performed with STZ-induced diabetic NOD/SCID mice. We compared the efficacy of transplanted cells between intraperitoneal and subcutaneous administration of alginate fibers by measuring blood glucose and human C-peptide levels serially in mice. Grafts were analyzed histologically, and gene expression in pancreatic ß cells was also compared. RESULTS: We demonstrated the reversal of hyperglycemia in diabetic model mice after intraperitoneal administration of these fibers, but not with subcutaneous ones. Intraperitoneal fibers were easily retrieved without any adhesion. Although we detected human c-peptide in mice plasma after subcutaneous administration of these fibers, these fibers became encased by fibrous tissue. CONCLUSIONS: These results suggest that the intraperitoneal space is favorable for islet-like cells derived from human iPS cells when encapsulated in alginate fiber.

15.
Cell Death Dis ; 10(6): 449, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31209199

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a metabolic liver disease that progresses from simple steatosis to the disease state of inflammation and fibrosis. Previous studies suggest that apoptosis and necroptosis may contribute to the pathogenesis of NASH, based on several murine models. However, the mechanisms underlying the transition of simple steatosis to steatohepatitis remain unclear, because it is difficult to identify when and where such cell deaths begin to occur in the pathophysiological process of NASH. In the present study, our aim is to investigate which type of cell death plays a role as the trigger for initiating inflammation in fatty liver. By establishing a simple method of discriminating between apoptosis and necrosis in the liver, we found that necrosis occurred prior to apoptosis at the onset of steatohepatitis in the choline-deficient, ethionine-supplemented (CDE) diet model. To further investigate what type of necrosis is involved in the initial necrotic cell death, we examined the effect of necroptosis and ferroptosis inhibition by administering inhibitors to wild-type mice in the CDE diet model. In addition, necroptosis was evaluated using mixed lineage kinase domain-like protein (MLKL) knockout mice, which is lacking in a terminal executor of necroptosis. Consequently, necroptosis inhibition failed to block the onset of necrotic cell death, while ferroptosis inhibition protected hepatocytes from necrotic death almost completely, and suppressed the subsequent infiltration of immune cells and inflammatory reaction. Furthermore, the amount of oxidized phosphatidylethanolamine, which is involved in ferroptosis pathway, was increased in the liver sample of the CDE diet-fed mice. These findings suggest that hepatic ferroptosis plays an important role as the trigger for initiating inflammation in steatohepatitis and may be a therapeutic target for preventing the onset of steatohepatitis.


Subject(s)
Ferroptosis , Liver/pathology , Non-alcoholic Fatty Liver Disease/pathology , Animals , Apoptosis/drug effects , Carbon Tetrachloride/toxicity , Chromans/pharmacology , Cytokines/metabolism , Diet , Ethionine , Ferroptosis/drug effects , Hepatitis/immunology , Hepatitis/metabolism , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Iron Chelating Agents/pharmacology , Liver/cytology , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Necroptosis/drug effects , Necrosis , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/metabolism
16.
Int J Dev Biol ; 63(6-7): 271-280, 2019.
Article in English | MEDLINE | ID: mdl-31250910

ABSTRACT

Human pluripotent stem cells (hPSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are very attractive cell sources for the treatment of diabetes mellitus, because numerous cells can be obtained using their infinite proliferation potential to overcome the paucity of donor islets. Advances in differentiation protocols make it possible to generate glucose responsive hPSC-beta cells, which can ameliorate hyperglycemia in diabetic mice. These protocols have mainly been based on an adherent culture system. However, in clinical applications, suspension culture methods are more suitable for large-scale culture. There are reports that suspension culture and spheroid formation promote differentiation in various cell types, including hPSCs, but, to our knowledge, there are no reports comparing gene expression patterns between suspension and adherent cultured human iPSCs (hiPSCs) during definitive endoderm (DE) differentiation. In this study, we chose several stage marker genes, not only for DE but also for posterior epiblast and primitive streak, and we examined their time course expression in suspension and adherent cultures by quantitative PT-PCR (qPCR), western blot, flow cytometry and immunocytochemistry. Our results demonstrate that expressions of these marker genes are faster and more strongly induced in suspension culture than in adherent culture during the DE differentiation process, indicating that suspension culture favors DE differentiation.


Subject(s)
Cell Adhesion , Cell Differentiation , Embryonic Stem Cells/cytology , Endoderm/cytology , Induced Pluripotent Stem Cells/cytology , Spheroids, Cellular/cytology , Cell Culture Techniques , Cells, Cultured , Embryonic Stem Cells/metabolism , Endoderm/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Spheroids, Cellular/metabolism
17.
PLoS One ; 14(5): e0217110, 2019.
Article in English | MEDLINE | ID: mdl-31145732

ABSTRACT

Maturity-onset diabetes of the young (MODY) is a heterozygous monogenic diabetes; more than 14 disease genes have been identified. However, the pathogenesis of MODY is not fully understood because the patients' pancreatic beta cells are inaccessible. To elucidate the pathology of MODY, we established MODY3 patient-derived iPS (MODY3-iPS) cells using non-integrating Sendai virus (SeV) vector and examined the mutant mRNA and protein of HNF1A (Hepatocyte Nuclear factor 1A) after pancreatic lineage differentiation. Our patient had a cytosine insertion in the HNF1A gene (P291fsinsC) causing frameshift and making a premature termination codon (PTC). We confirmed these MODY3-iPS cells possessed the characteristics of pluripotent stem cells. After we differentiated them into pancreatic beta cells, transcripts of HNF1A gene were cloned and sequenced. We found that P291fsinsC mutant transcripts were much less frequent than wild ones, but they increased after adding cycloheximide (CHX) to the medium. These results suggested that mutant mRNA was destroyed by nonsense-mediated mRNA decay (NMD). Moreover, we were not able to detect any band of mutant proteins in pancreatic lineage cells which were differentiated from MODY3-iPSCs by western blot (WB) analysis. A scarcity of the truncated form of mutant protein may indicate that MODY3 might be caused by a haplo-insufficiency effect rather than a dominant negative manner.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Hepatocyte Nuclear Factor 1-alpha/metabolism , Induced Pluripotent Stem Cells/pathology , Insulin-Secreting Cells/pathology , Mutation , RNA, Messenger/genetics , Cells, Cultured , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Female , Haploinsufficiency , Hepatocyte Nuclear Factor 1-alpha/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Insulin-Secreting Cells/metabolism , RNA, Messenger/metabolism
18.
Colloids Surf B Biointerfaces ; 179: 453-461, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31005740

ABSTRACT

We developed a facile fabrication method for preparing poly(ethylene glycol)(PEG)-coated poly (lactic-co-glycolic acid) (PLGA) microspheres with homogeneous size distribution via a combination of mPEG-b-PLGA and Shirasu Porous Glass membrane emulsification. Subsequently, extracellular matrix (ECM) degrading enzymes, collagenase (COLase) or hyaluronidase (HAse) were loaded into the microspheres. The obtained microspheres exhibited a sustained release of COLase or HAse over 10 days. The degradation of ECM polymers by the released COLase and HAse was confirmed in vitro. Reversal of established dermal fibrosis via degradation of over-deposited ECM is a promising treatment for scleroderma. The therapeutic effects of COLase- and HAse-loaded PLGA microspheres on scleroderma were evaluated in vivo following their intradermal administration to a bleomycin-induced mice model of scleroderma. COLase- and HAse-loaded PLGA microspheres decreased scleroderma dermal thickness without altering the mechanical properties of skin, whereas the administration of free COLase and HAse solution induced overdecomposition of skin ECM and α-SMA expression. The facile one-pot synthesis of PEG-coated PLGA microspheres with high colloidal stability and narrow size distribution could be employed as a drug carrier for various diseases in future.


Subject(s)
Collagenases/therapeutic use , Glass/chemistry , Hyaluronoglucosaminidase/therapeutic use , Membranes, Artificial , Microspheres , Polyethylene Glycols/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Scleroderma, Systemic/drug therapy , Animals , Cattle , Colloids/chemistry , Disease Models, Animal , Emulsions/chemistry , Extracellular Matrix/metabolism , Iron/metabolism , Mice , Particle Size , Porosity , Skin/metabolism , Skin/pathology , Swine
19.
Regen Ther ; 10: 69-76, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30623004

ABSTRACT

INTRODUCTION: To complement islet transplantation for type1 diabetic patients, cell-based therapy using pluripotent stem cells such as ES cells and iPS cells is promising. Many papers have already reported the induction of pancreatic ß cells from these cell types, but a suspension culture system has not usually been employed. The aim of this study is to establish a suspension culture method for inducing functional islet-like cells from human iPS cells. METHODS: We used 30 ml spinner type culture vessels for human iPS cells throughout the differentiation process. Differentiated cells were analyzed by immunostaining and C-peptide secretion. Cell transplantation experiments were performed with STZ-induced diabetic NOD/SCID mice. Blood human C-peptide and glucagon levels were measured serially in mice, and grafts were analyzed histologically. RESULTS: We obtained spherical pancreatic beta-like cells from human iPS cells and detected verifiable amounts of C-peptide secretion in vitro. We demonstrated reversal of hyperglycemia in diabetic model mice after transplantation of these cells, maintaining non-fasting blood glucose levels along with the human glycemic set point. We confirmed the secretion of human insulin and glucagon dependent on the blood glucose level in vivo. Immunohistological analysis revealed that grafted cells became α, ß and δ cells in vivo. CONCLUSIONS: These results suggest that differentiated cells derived from human iPS cells grown in suspension culture mature and function like pancreatic islets in vivo.

20.
Regen Ther ; 12: 14-19, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31890762

ABSTRACT

A differentiation of human induced pluripotent stem cells (hiPSCs) into definitive endoderm linage is required for a preparation of metabolic organ derived cells. The differentiation consumed high-priced cytokines and small molecules, which have hampered the manufacturability of differentiated cells. Although the cytokines and small molecules are remained or cells produce the autocrine factors, daily culture medium change should be proceeded to remove toxic metabolites generated from cells. In this study, we developed a simple dialysis culture system to refine the medium during definitive endodermal differentiation. We demonstrated that dialysis culture prevented cell damage to remove lactate. The hiPSCs cultured with dialysis also differentiated similarly as usual differentiation without dialysis even if they were not supplied Activin A for latter culture days in the differentiation. With this dialysis culture system, hiPSCs were differentiated into endodermal lineage with medium refinement and recycling and autocrine factors as well as cytokines, which may lead to reduce differentiation cost.

SELECTION OF CITATIONS
SEARCH DETAIL
...