Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 136(2)2023 01 15.
Article in English | MEDLINE | ID: mdl-36546833

ABSTRACT

The temporal order of DNA replication along the chromosomes is thought to reflect the transcriptional competence of the genome. During differentiation of mouse 3T3-L1 cells into adipocytes, cells undergo one or two rounds of cell division called mitotic clonal expansion (MCE). MCE is an essential step for adipogenesis; however, little is known about the regulation of DNA replication during this period. Here, we performed genome-wide mapping of replication timing (RT) in mouse 3T3-L1 cells before and during MCE, and identified a number of chromosomal regions shifting toward either earlier or later replication through two rounds of replication. These RT changes were confirmed in individual cells by single-cell DNA-replication sequencing. Coordinate changes between a shift toward earlier replication and transcriptional activation of adipogenesis-associated genes were observed. RT changes occurred before the full expression of these genes, indicating that RT reorganization might contribute to the mature adipocyte phenotype. To support this, cells undergoing two rounds of DNA replication during MCE had a higher potential to differentiate into lipid droplet-accumulating adipocytes, compared with cells undergoing a single round of DNA replication and non-replicating cells.


Subject(s)
Adipogenesis , Mitosis , Animals , Mice , Adipogenesis/genetics , Mitosis/genetics , Cell Differentiation/genetics , DNA Replication/genetics , Gene Expression , 3T3-L1 Cells
2.
Biosci Biotechnol Biochem ; 80(5): 945-8, 2016 May.
Article in English | MEDLINE | ID: mdl-26923175

ABSTRACT

We analyzed DNA replication in early zebrafish embryos. The replicating DNA of whole embryos was labeled with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU), and spatial regulation of replication sites was visualized in single embryo-derived cells. The results unveiled uncharacterized replication dynamics during zebrafish early embryogenesis.


Subject(s)
DNA Replication , Embryo, Nonmammalian/metabolism , Embryonic Development/genetics , Zebrafish/embryology , Animals , Deoxyuridine/analogs & derivatives , Deoxyuridine/metabolism , Embryo, Nonmammalian/ultrastructure , Microscopy, Fluorescence , Staining and Labeling , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...