Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; : PHYTO12230490R, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38669587

ABSTRACT

Xanthomonas citri is a plant-pathogenic bacterium associated with a diverse range of host plant species. It has undergone substantial reclassification and currently consists of 14 different subspecies or pathovars that are responsible for a wide range of plant diseases. Whole-genome sequencing (WGS) provides a cutting-edge advantage over other diagnostic techniques in epidemiological and evolutionary studies of X. citri because it has a higher discriminatory power and is replicable across laboratories. WGS also allows for the improvement of multilocus sequence typing (MLST) schemes. In this study, we used genome sequences of Xanthomonas isolates from the NCBI RefSeq database to develop a seven-gene MLST scheme that yielded 19 sequence types (STs) that correlated with phylogenetic clades of X. citri subspecies or pathovars. Using this MLST scheme, we examined 2,911 Xanthomonas species assemblies from NCBI GenBank and identified 15 novel STs from 37 isolates that were misclassified in NCBI. In total, we identified 545 X. citri assemblies from GenBank with 95% average nucleotide identity to the X. citri type strain, and all were classified as one of the 34 STs. All MLST classifications correlated with a phylogenetic position inferred from alignments using 92 conserved genes. We observed several instances where strains from different pathovars formed closely related monophyletic clades and shared the same ST, indicating that further investigation of the validity of these pathovars is required. Our MLST scheme described here is a robust tool for rapid classification of X. citri pathovars using WGS and a powerful method for further comprehensive taxonomic revision of X. citri pathovars.

2.
Article in English | MEDLINE | ID: mdl-38536071

ABSTRACT

Five bacterial isolates were isolated from Fragaria × ananassa in 1976 in Rydalmere, Australia, during routine biosecurity surveillance. Initially, the results of biochemical characterisation indicated that these isolates represented members of the genus Xanthomonas. To determine their species, further analysis was conducted using both phenotypic and genotypic approaches. Phenotypic analysis involved using MALDI-TOF MS and BIOLOG GEN III microplates, which confirmed that the isolates represented members of the genus Xanthomonas but did not allow them to be classified with respect to species. Genome relatedness indices and the results of extensive phylogenetic analysis confirmed that the isolates were members of the genus Xanthomonas and represented a novel species. On the basis the minimal presence of virulence-associated factors typically found in genomes of members of the genus Xanthomonas, we suggest that these isolates are non-pathogenic. This conclusion was supported by the results of a pathogenicity assay. On the basis of these findings, we propose the name Xanthomonas rydalmerensis, with DAR 34855T = ICMP 24941 as the type strain.


Subject(s)
Fragaria , Xanthomonas , Phylogeny , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Fatty Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...