Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 439: 138086, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38043281

ABSTRACT

Dehulled hempseed (DHS), fermented dehulled hempseed (FDHS), hempseed cake (HSC), and fermented HSC (FHSC) were examined for their phytochemical composition, health benefits, and rheological characteristics. At 500 µg/mL concentration, DHS, FDHS, HSC, and FHSC extracts exhibited the ability to inhibit DPPH radicals, with 32.46 %, 47.35 %, 33.85 %, and 47.41 %, respectively. Similarly, they demonstrated potential to scavenge ABTS radicals by 13.7 %, 27.87 %, 14.40 % and 25.70 %, respectively. For lipase inhibition activity, FDHS (72.92 %) and FDHS (85.89 %) outperformed DHS (52.94 %) and HSC (43.08 %). Furthermore, FHSC enhanced the survival and reduced fat accumulation in glucose-supplemented Caenorhabditis elegans. We used HPLC and UHPLC-ESI-QTOF-MS for metabolite analysis, quantifying eight polyphenols using HPLC and identifying thirty-four metabolites with UHPLC-ESI-QTOF-MS. Generally, metabolomics indicated an improved metabolite profile after fermentation. Fermentation also showed impact on rheological characteristics, modifying viscosity, loss modulus, and storage modulus. These findings collectively demonstrate the ability of fermentation in enhancing overall value of hempseed.


Subject(s)
Antioxidants , Polyphenols , Fermentation , Polyphenols/chemistry , Antioxidants/chemistry , Glucose , Plant Extracts/chemistry
2.
Food Chem ; 428: 136722, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37429240

ABSTRACT

The impact of fermentation and germination on the metabolite profile and bioactive of 'Cheongsam' hempseed was investigated. The seeds were germinated for 3 days at 26 °C and fermented for 48 h at 37 °C using Pediococcus acidilactici (SRCM201591). The raw (R), fermented seed (RF), sprouts (S), and fermented sprouts (SF) extracts were assessed for anti-nutrients, metabolite profile, and selected bioactivities. Germination and fermentation significantly altered anti-nutrient levels (tannins, saponins, phytic acid, and trypsin inhibitors). They increased total polyphenols, flavonoid contents, and individual polyphenols and cannabinoids. SF demonstrated the highest ABTS (IC50, 291.65 µg/mL) and DPPH (IC50, 345.30 µg/mL) scavenging capacities. However, S (IC50, 73.295 µg/mL) was the most potent anti-inflammatory ingredient. SF (IC50, 74.07 µg/mL) exhibited the most potent alpha-glucosidase inhibition for enzyme inhibitions, while RF (IC50, 63.31 µg/mL) showed the best lipase inhibition potential. The findings demonstrate that germination and fermentation could improve the functional properties of hempseed.


Subject(s)
Cannabis , Lactobacillales , Antioxidants/chemistry , Fermentation , Cannabis/chemistry , Lactobacillales/metabolism , Polyphenols/analysis , Seeds/chemistry , Germination
SELECTION OF CITATIONS
SEARCH DETAIL
...