Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 183, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195621

ABSTRACT

The vagus nerve crucially affects emotions and psychiatric disorders. However, the detailed neurophysiological dynamics of the vagus nerve in response to emotions and its associated pathological changes remain unclear. In this study, we demonstrated that the spike rates of the cervical vagus nerve change depending on anxiety behavior in an elevated plus maze test, and these changes were eradicated in stress-susceptible male mice. Furthermore, instantaneous spike rates of the vagus nerve were negatively and positively correlated with the power of 2-4 Hz and 20-30 Hz oscillations, respectively, in the prefrontal cortex and amygdala. The oscillations also underwent dynamic changes depending on the behavioral state in the elevated plus maze, and these changes were no longer observed in stress-susceptible and vagotomized mice. Chronic vagus nerve stimulation restored behavior-relevant neuronal oscillations with the recovery of altered behavioral states in stress-susceptible mice. These results suggested that physiological vagal-brain communication underlies anxiety and mood disorders.


Subject(s)
Anxiety Disorders , Anxiety , Humans , Male , Animals , Mice , Emotions , Amygdala , Vagus Nerve
2.
Front Behav Neurosci ; 15: 698753, 2021.
Article in English | MEDLINE | ID: mdl-34177486

ABSTRACT

Emotional behavior and psychological disorders are expressed through coordinated interactions across multiple brain regions. Brain electrophysiological signals are composed of diverse neuronal oscillations, representing cell-level to region-level neuronal activity patterns, and serve as a biomarker of mental disorders. Here, we review recent observations from rodents demonstrating how neuronal oscillations in the hippocampus, amygdala, and prefrontal cortex are engaged in emotional behavior and altered by psychiatric changes such as anxiety and depression. In particular, we focus mainly on theta-range (4-12 Hz) oscillations, including several distinct oscillations in this frequency range. We then discuss therapeutic possibilities related to controlling such mental disease-related neuronal oscillations to ameliorate psychiatric symptoms and disorders in rodents and humans.

3.
Adv Exp Med Biol ; 1293: 459-470, 2021.
Article in English | MEDLINE | ID: mdl-33398833

ABSTRACT

The vagus nerve plays a pivotal role in communication between the brain and peripheral organs involved in the sensory detection and the autonomic control of visceral activity. While the lack of appropriate experimental techniques to manipulate the physiological activity of the vagus nerve has been a long-standing problem, recent advancements in optogenetic tools, including viral vectors and photostimulation devices, during the late 2010s have begun to overcome this technical hurdle. Furthermore, identifying promoters for expressing transgenes in a cell-type-specific subpopulation of vagal neurons enables the selective photoactivation of afferent/efferent vagal neurons and specific visceral organ-innervating vagal neurons. In this chapter, we describe recent optogenetic approaches to study vagus nerve physiology and describe how these approaches have provided novel findings on the roles of vagus nerve signals in the cardiac, respiratory, and gastrointestinal systems. Compared with studies of the central nervous system, there are still few insights into vagus nerve physiology. Further studies with optogenetic tools will be useful for understanding the fundamental characteristics of vagus nerve signals transferred throughout the body.


Subject(s)
Optogenetics , Vagus Nerve , Neurons , Neurons, Afferent , Neurons, Efferent
4.
Biochem Biophys Res Commun ; 524(2): 340-345, 2020 04 02.
Article in English | MEDLINE | ID: mdl-31996305

ABSTRACT

The brain-gut axis which is an interaction between recognition and emotion and the gut sensory system for food and microbiota is important for health. However, there is no real-time monitoring system of the brain and the gut simultaneously so far. We attempted to establish a dual real-time monitoring system for the brain-gut axis by a combination of intravital Ca2+ imaging of the gut and electroencephalogram. Using a conditional Yellow Cameleon 3.60 expression mouse line, we performed intravital imaging of the gut, electrophysiological recordings of the vagus nerve, and electroencephalogram recordings of the various cortical regions simultaneously upon capsaicin stimuli as a positive control. Upon capsaicin administration into the small intestinal lumen, a simultaneous response of Ca2+ signal in the enteric nervous system and cortical local field potentials (LFPs) was successfully observed. Both of them responded immediately upon capsaicin stimuli. Capsaicin triggered a significant increase in the frequency of vagus nerve spikes and a significant decrease in the slow-wave power of cortical LFPs. Furthermore, capsaicin induced delayed and sustained Ca2+ signal in intestinal epithelial cells and then suppressed intestinal motility. The dual real-time monitoring system of the brain and the gut enables to dissect the interaction between the brain and the gut over time with precision.


Subject(s)
Brain/physiology , Enteric Nervous System/physiology , Gastrointestinal Tract/physiology , Vagus Nerve/physiology , Animals , Brain/drug effects , Calcium Signaling/drug effects , Capsaicin/pharmacology , Cell Line , Cells, Cultured , Electrophysiological Phenomena , Enteric Nervous System/drug effects , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/innervation , Male , Mice , Mice, Inbred C57BL , Monitoring, Physiologic , Sensory System Agents/pharmacology , Vagus Nerve/drug effects
5.
J Physiol ; 597(21): 5295-5306, 2019 11.
Article in English | MEDLINE | ID: mdl-31512754

ABSTRACT

KEY POINTS: High-frequency (HF) sniffing represents active odour sampling and an increase in the animal's motivation. We examined how HF sniffing affects the physiological activity of the brain-body system. During HF sniffing, heart rates and the ratio of theta to delta critical local field potential power were comparable to those observed during motion periods. Vagus nerve spike rates did not vary depending on HF sniffing. Our results suggest that physiological factors in the central nervous system and the periphery are not simply determined by locomotion but are crucially associated with HF sniffing. ABSTRACT: Sniffing is a fundamental behaviour for odour sampling, and high-frequency (HF) sniffing, generally at a sniff frequency of more than 6 Hz, is considered to represent an animal's increased motivation to explore external environments. Here, we examined how HF sniffing is associated with changes in physiological signals from the central and peripheral organs in rats. During HF sniffing while the rats were stationary, heart rates, the magnitude of dorsal neck muscle contraction, and the ratio of theta to delta local field potential power in the motor cortex were comparable to those observed during motion periods and were significantly higher than those observed during resting respiration periods. No pronounced changes in vagus nerve spike rates were detected in relation to HF sniffing. These results demonstrate that central and peripheral physiological factors are crucially associated with the emergence of HF sniffing, especially during quiescent periods. Behavioural data might be improved to more accurately evaluate an animal's internal psychological state if they are combined with a sniffing pattern as a physiological marker.


Subject(s)
Heart/physiology , Motor Cortex/physiology , Olfactory Bulb/physiology , Smell/physiology , Animals , Male , Odorants , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Respiration , Vagus Nerve/physiology
6.
Eur J Neurosci ; 49(10): 1298-1312, 2019 05.
Article in English | MEDLINE | ID: mdl-30450796

ABSTRACT

The vagus nerve serves as a central pathway for communication between the central and peripheral organs. Despite traditional knowledge of vagus nerve functions, detailed neurophysiological dynamics of the vagus nerve in naïve behavior remain to be understood. In this study, we developed a new method to record spiking patterns from the cervical vagus nerve while simultaneously monitoring central and peripheral organ bioelectrical signals in a freely moving rat. When the rats transiently elevated locomotor activity, the frequency of vagus nerve spikes was correspondingly increased, and this activity was retained for several seconds after the increase in running speed terminated. Spike patterns of the vagus nerve were not robustly associated with which arms the animals entered on an elevated plus maze. During sniffing behavior, vagus nerve spikes were nearly absent. During stopping, the vagus nerve spike patterns differed considerably depending on external contexts and peripheral activity states associated with cortical arousal levels. Stimulation of the vagus nerve altered rat's running speed and cortical arousal states depending on running speed at the instant of stimulation. These observations are a new step for uncovering the physiological dynamics of the vagus nerve modulating the visceral organs such as cardiovascular, respiratory, and gastrointestinal systems.


Subject(s)
Action Potentials/physiology , Arousal/physiology , Locomotion/physiology , Motor Cortex/physiology , Neurons/physiology , Vagus Nerve/physiology , Animals , Male , Rats, Sprague-Dawley
7.
J Pharmacol Sci ; 137(2): 177-186, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30042023

ABSTRACT

Normal respiratory and circulatory functions are crucial for survival. However, conventional methods of monitoring respiration, some of which use sensors inserted into the nasal cavity, may interfere with naïve respiratory rates. In this study, we conducted a single-point measurement of electrocardiograms (ECGs) from the pectoral muscles of anesthetized and waking mice and found low-frequency oscillations in the ECG baseline. Using the fast Fourier transform of simultaneously recorded respiratory signals, we demonstrated that the low-frequency oscillations corresponded to respiratory rhythms. Moreover, the baseline oscillations changed in parallel with the respiratory rhythm when the latter was altered by pharmacological manipulation. We also demonstrated that this method could be combined with in vivo whole-cell patch-clamp recordings from the hippocampus. Thus, we developed a non-invasive form of respirometry in mice. Our recording method using a simple derivation algorithm is applicable to a variety of physiological and pharmacological experiments, providing an experimental platform in studying the mechanisms underlying the interaction of the central nervous system and the peripheral functions.


Subject(s)
CA1 Region, Hippocampal/physiology , Electrocardiography/methods , Patch-Clamp Techniques/methods , Pectoralis Muscles/physiology , Respiration , Respiratory Physiological Phenomena , Animals , Fourier Analysis , Male , Mice, Inbred ICR , Neurons/physiology
8.
Front Behav Neurosci ; 12: 62, 2018.
Article in English | MEDLINE | ID: mdl-29666572

ABSTRACT

Elevated plus maze (EPM) tests have been used to assess animal anxiety levels. Little information is known regarding how physiological activity patterns of the brain-body system are altered during EPM tests. Herein, we monitored cortical local field potentials (LFPs), electrocardiograms (ECGs), electromyograms (EMGs), and respiratory signals in individual mice that were repeatedly exposed to EPM tests. On average, mouse heart rates were higher in open arms. In closed arms, the mice occasionally showed decreased heart and respiratory rates lasting for several seconds or minutes, characterized as low-peripheral activity states of peripheral signals. The low-activity states were observed only when the animals were in closed arms, and the frequencies of the states increased as the testing days proceeded. During the low-activity states, the delta and theta powers of cortical LFPs were significantly increased and decreased, respectively. These results demonstrate that cortical oscillations crucially depend on whether an animal exhibits low-activity states in peripheral organs rather than the EPM arm in which the animal is located. These results suggest that combining behavioral tests with physiological makers enables a more accurate evaluation of rodent mental states.

SELECTION OF CITATIONS
SEARCH DETAIL
...