Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
medRxiv ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38712177

ABSTRACT

Intracortical microstimulation (ICMS) is a method for restoring sensation to people with paralysis as part of a bidirectional brain-computer interface to restore upper limb function. Evoking tactile sensations of the hand through ICMS requires precise targeting of implanted electrodes. Here we describe the presurgical imaging procedures used to generate functional maps of the hand area of the somatosensory cortex and subsequent planning that guided the implantation of intracortical microelectrode arrays. In five participants with cervical spinal cord injury, across two study locations, this procedure successfully enabled ICMS-evoked sensations localized to at least the first four digits of the hand. The imaging and planning procedures developed through this clinical trial provide a roadmap for other brain-computer interface studies to ensure successful placement of stimulation electrodes.

2.
Nat Biomed Eng ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097809

ABSTRACT

Restoring somatosensory feedback in individuals with lower-limb amputations would reduce the risk of falls and alleviate phantom limb pain. Here we show, in three individuals with transtibial amputation (one traumatic and two owing to diabetic peripheral neuropathy), that sensations from the missing foot, with control over their location and intensity, can be evoked via lateral lumbosacral spinal cord stimulation with commercially available electrodes and by modulating the intensity of stimulation in real time on the basis of signals from a wireless pressure-sensitive shoe insole. The restored somatosensation via closed-loop stimulation improved balance control (with a 19-point improvement in the composite score of the Sensory Organization Test in one individual) and gait stability (with a 5-point improvement in the Functional Gait Assessment in one individual). And over the implantation period of the stimulation leads, the three individuals experienced a clinically meaningful decrease in phantom limb pain (with an average reduction of nearly 70% on a visual analogue scale). Our findings support the further clinical assessment of lower-limb neuroprostheses providing somatosensory feedback.

4.
Nat Commun ; 14(1): 7270, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37949923

ABSTRACT

The primary motor (M1) and somatosensory (S1) cortices play critical roles in motor control but the signaling between these structures is poorly understood. To fill this gap, we recorded - in three participants in an ongoing human clinical trial (NCT01894802) for people with paralyzed hands - the responses evoked in the hand and arm representations of M1 during intracortical microstimulation (ICMS) in the hand representation of S1. We found that ICMS of S1 activated some M1 neurons at short, fixed latencies consistent with monosynaptic activation. Additionally, most of the ICMS-evoked responses in M1 were more variable in time, suggesting indirect effects of stimulation. The spatial pattern of M1 activation varied systematically: S1 electrodes that elicited percepts in a finger preferentially activated M1 neurons excited during that finger's movement. Moreover, the indirect effects of S1 ICMS on M1 were context dependent, such that the magnitude and even sign relative to baseline varied across tasks. We tested the implications of these effects for brain-control of a virtual hand, in which ICMS conveyed tactile feedback. While ICMS-evoked activation of M1 disrupted decoder performance, this disruption was minimized using biomimetic stimulation, which emphasizes contact transients at the onset and offset of grasp, and reduces sustained stimulation.


Subject(s)
Motor Cortex , Somatosensory Cortex , Humans , Somatosensory Cortex/physiology , Motor Cortex/physiology , Neurons/physiology , Movement/physiology , Hand , Electric Stimulation
5.
bioRxiv ; 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37425877

ABSTRACT

When we interact with objects, we rely on signals from the hand that convey information about the object and our interaction with it. A basic feature of these interactions, the locations of contacts between the hand and object, is often only available via the sense of touch. Information about locations of contact between a brain-controlled bionic hand and an object can be signaled via intracortical microstimulation (ICMS) of somatosensory cortex (S1), which evokes touch sensations that are localized to a specific patch of skin. To provide intuitive location information, tactile sensors on the robotic hand drive ICMS through electrodes that evoke sensations at skin locations matching sensor locations. This approach requires that ICMS-evoked sensations be focal, stable, and distributed over the hand. To systematically investigate the localization of ICMS-evoked sensations, we analyzed the projected fields (PFs) of ICMS-evoked sensations - their location and spatial extent - from reports obtained over multiple years from three participants implanted with microelectrode arrays in S1. First, we found that PFs vary widely in their size across electrodes, are highly stable within electrode, are distributed over large swaths of each participant's hand, and increase in size as the amplitude or frequency of ICMS increases. Second, while PF locations match the locations of the receptive fields (RFs) of the neurons near the stimulating electrode, PFs tend to be subsumed by the corresponding RFs. Third, multi-channel stimulation gives rise to a PF that reflects the conjunction of the PFs of the component channels. By stimulating through electrodes with largely overlapping PFs, then, we can evoke a sensation that is experienced primarily at the intersection of the component PFs. To assess the functional consequence of this phenomenon, we implemented multichannel ICMS-based feedback in a bionic hand and demonstrated that the resulting sensations are more localizable than are those evoked via single-channel ICMS.

6.
bioRxiv ; 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-36824713

ABSTRACT

Manual interactions with objects are supported by tactile signals from the hand. This tactile feedback can be restored in brain-controlled bionic hands via intracortical microstimulation (ICMS) of somatosensory cortex (S1). In ICMS-based tactile feedback, contact force can be signaled by modulating the stimulation intensity based on the output of force sensors on the bionic hand, which in turn modulates the perceived magnitude of the sensation. In the present study, we gauged the dynamic range and precision of ICMS-based force feedback in three human participants implanted with arrays of microelectrodes in S1. To this end, we measured the increases in sensation magnitude resulting from increases in ICMS amplitude and participant's ability to distinguish between different intensity levels. We then assessed whether we could improve the fidelity of this feedback by implementing "biomimetic" ICMS-trains, designed to evoke patterns of neuronal activity that more closely mimic those in natural touch, and by delivering ICMS through multiple channels at once. We found that multi-channel biomimetic ICMS gives rise to stronger and more distinguishable sensations than does its single-channel counterpart. Finally, we implemented biomimetic multi-channel feedback in a bionic hand and had the participant perform a compliance discrimination task. We found that biomimetic multi-channel tactile feedback yielded improved discrimination over its single-channel linear counterpart. We conclude that multi-channel biomimetic ICMS conveys finely graded force feedback that more closely approximates the sensitivity conferred by natural touch.

8.
Elife ; 92020 11 17.
Article in English | MEDLINE | ID: mdl-33200745

ABSTRACT

Low-dimensional linear dynamics are observed in neuronal population activity in primary motor cortex (M1) when monkeys make reaching movements. This population-level behavior is consistent with a role for M1 as an autonomous pattern generator that drives muscles to give rise to movement. In the present study, we examine whether similar dynamics are also observed during grasping movements, which involve fundamentally different patterns of kinematics and muscle activations. Using a variety of analytical approaches, we show that M1 does not exhibit such dynamics during grasping movements. Rather, the grasp-related neuronal dynamics in M1 are similar to their counterparts in somatosensory cortex, whose activity is driven primarily by afferent inputs rather than by intrinsic dynamics. The basic structure of the neuronal activity underlying hand control is thus fundamentally different from that underlying arm control.


Subject(s)
Motor Cortex/cytology , Motor Cortex/physiology , Neurons/physiology , Animals , Brain Mapping , Hand Strength/physiology , Macaca mulatta , Movement/physiology , Psychomotor Performance/physiology
9.
J Neural Eng ; 17(4): 046035, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32442987

ABSTRACT

OBJECTIVE: The hand-a complex effector comprising dozens of degrees of freedom of movement-endows us with the ability to flexibly, precisely, and effortlessly interact with objects. The neural signals associated with dexterous hand movements in primary motor cortex (M1) and somatosensory cortex (SC) have received comparatively less attention than have those associated with proximal upper limb control. APPROACH: To fill this gap, we trained two monkeys to grasp objects varying in size and shape while tracking their hand postures and recording single-unit activity from M1 and SC. We then decoded their hand kinematics across tens of joints from population activity in these areas. MAIN RESULTS: We found that we could accurately decode kinematics with a small number of neural signals and that different cortical fields carry different amounts of information about hand kinematics. In particular, neural signals in rostral M1 led to better performance than did signals in caudal M1, whereas Brodmann's area 3a outperformed areas 1 and 2 in SC. Moreover, decoding performance was higher for joint angles than joint angular velocities, in contrast to what has been found with proximal limb decoders. SIGNIFICANCE: We conclude that cortical signals can be used for dexterous hand control in brain machine interface applications and that postural representations in SC may be exploited via intracortical stimulation to close the sensorimotor loop.


Subject(s)
Motor Cortex , Sensorimotor Cortex , Biomechanical Phenomena , Hand , Hand Strength , Movement
10.
J Neural Eng ; 15(6): 066033, 2018 12.
Article in English | MEDLINE | ID: mdl-30245482

ABSTRACT

OBJECTIVE: Hand function can be restored in upper-limb amputees by equipping them with anthropomorphic prostheses controlled with signals from residual muscles. The dexterity of these bionic hands is severely limited in large part by the absence of tactile feedback about interactions with objects. We propose that, to the extent that artificial touch mimics its natural counterpart, these sensory signals will be more easily integrated into the motor plan for object manipulation. APPROACH: We describe an approach to convey tactile feedback through electrical stimulation of the residual somatosensory nerves that mimics the aggregate activity of tactile fibers that would be produced in the nerve of a native hand during object interactions. Specifically, we build a parsimonious model that maps the stimulus-described as time-varying indentation depth, indentation rate, and acceleration-into continuous estimates of the time-varying population firing rate and of the size of the recruited afferent population. MAIN RESULTS: The simple model can reconstruct aggregate afferent responses to a wide range of stimuli, including those experienced during activities of daily living. SIGNIFICANCE: We discuss how the proposed model can be implemented with a peripheral nerve interface and anticipate it will lead to improved dexterity for prosthetic hands.


Subject(s)
Biomimetics , Bionics , Hand/physiology , Neural Prostheses , Prostheses and Implants , Touch/physiology , Activities of Daily Living , Algorithms , Electric Stimulation , Feedback, Sensory , Hand/innervation , Humans , Models, Neurological , Nerve Fibers/physiology , Prosthesis Design , Reproducibility of Results
11.
Sci Rep ; 7(1): 3772, 2017 06 19.
Article in English | MEDLINE | ID: mdl-28630468

ABSTRACT

Although the first experiments on alpha-neurofeedback date back nearly six decades ago, when Joseph Kamiya reported successful operant conditioning of alpha-rhythm in humans, the effectiveness of this paradigm in various experimental and clinical settings is still a matter of debate. Here, we investigated the changes in EEG patterns during a continuously administered neurofeedback of P4 alpha activity. Two days of neurofeedback training were sufficient for a significant increase in the alpha power to occur. A detailed analysis of these EEG changes showed that the alpha power rose because of an increase in the incidence rate of alpha episodes, whereas the amplitude and the duration of alpha oscillations remained unchanged. These findings suggest that neurofeedback facilitates volitional control of alpha activity onset, but alpha episodes themselves appear to be maintained automatically with no volitional control - a property overlooked by previous studies that employed continuous alpha-power neurofeedback. We propose that future research on alpha neurofeedback should explore reinforcement schedules based on detection of onsets and offsets of alpha waves, and employ these statistics for exploration and quantification of neurofeedback induced effects.


Subject(s)
Alpha Rhythm/physiology , Biological Clocks/physiology , Adult , Female , Humans , Male
12.
Front Neurosci ; 9: 389, 2015.
Article in English | MEDLINE | ID: mdl-26578856

ABSTRACT

In recent years, several assistive devices have been proposed to reconstruct arm and hand movements from electromyographic (EMG) activity. Although simple to implement and potentially useful to augment many functions, such myoelectric devices still need improvement before they become practical. Here we considered the problem of reconstruction of handwriting from multichannel EMG activity. Previously, linear regression methods (e.g., the Wiener filter) have been utilized for this purpose with some success. To improve reconstruction accuracy, we implemented the Kalman filter, which allows to fuse two information sources: the physical characteristics of handwriting and the activity of the leading hand muscles, registered by the EMG. Applying the Kalman filter, we were able to convert eight channels of EMG activity recorded from the forearm and the hand muscles into smooth reconstructions of handwritten traces. The filter operates in a causal manner and acts as a true predictor utilizing the EMGs from the past only, which makes the approach suitable for real-time operations. Our algorithm is appropriate for clinical neuroprosthetic applications and computer peripherals. Moreover, it is applicable to a broader class of tasks where predictive myoelectric control is needed.

13.
Front Neurosci ; 9: 517, 2015.
Article in English | MEDLINE | ID: mdl-26834543

ABSTRACT

[This corrects the article on p. 389 in vol. 9, PMID: 26578856.].

SELECTION OF CITATIONS
SEARCH DETAIL
...