Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Clin Med ; 12(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37510846

ABSTRACT

The purpose of this review was to conduct a comparative assessment of the concepts of therapy for pediatric patients with COVID-19 in the framework of global clinical practice. A structural analysis of the range of drugs and treatment strategies in the context of etiotropic, pathogenetic, and symptomatic therapy has shown that in the global context and in real clinical practice, the etiotropic-pathogenetic approach based on information about the effectiveness of individual medical technologies prevails today. It has been established that eight international nonproprietary/grouping names are present in international practice as means of etiotropic therapy for pediatric patients with COVID-19, and 18 positions are used for pathogenetic therapy. In terms of frequency of occurrence, the leading positions are occupied by remdesivir and the combination of nirmatrelvir with ritonavir, as well as dexamethasone and tocilizumab. The paper emphasizes the relevance of research in the field of evaluating the effectiveness of individual treatment regimens as well as the analysis of the delayed consequences of pathology suffered in childhood under the conditions of using various approaches to pharmacotherapy.

2.
Brain Sci ; 13(3)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36979218

ABSTRACT

One of the most important tasks in neuroscience is the search for theoretical foundations for the development of methods for diagnosing and treating neurological pathology, and for assessing the effect of pharmacological drugs on the nervous system. Specific behavioral changes associated with exposure to systemic influences have been invisible to the human eye for a long time. A similar pattern of changes is characteristic of phenazepam, a drug with a wide range of effects on the brain. In this study, we used a color-coding method, which consists of combining three time positions in one image, the present (0 s), the near future (0.33 s) and the far future (1.6 s). This method made it possible to identify movement patterns, such as the initialization of ahead movements, side turns and 180° turns (back), and also to determine the degree of predictability of future movements. The obtained data revealed a decrease in the number of turns to the sides while maintaining ahead movement, as well as an increase in the predictability of movements in rats under the influence of phenazepam. Thus, sedative doses of phenazepam do not exhibit general depression of brain functions, but the inhibition of specific centers, including the medial prefrontal cortex and postsubiculum, which are involved in stereotypic locomotive behavior.

3.
Biomedicines ; 10(11)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36359303

ABSTRACT

Chromone-containing allylmorpholines (CCAMs) are a novel class of compounds that have demonstrated acetyl- and butyryl-cholinesterase-inhibiting and N-methyl-D-aspartate (NMDA) receptor-blocking properties in vitro, but their in vivo pharmacological activity remains underexplored. In this work, we evaluated the psychotropic activity of five different CCAMs (1 (9a), 2 (9j), 3 (9l), 4 (33a), and 5 (33b)) using the novel tank test (NTT) and light/dark box (LDB) test in adult zebrafish. The CCAMs were screened in the NTT at a range of concentrations, and they were found to induce a dose-dependent sedative effect. Compound 4 (33a) was also evaluated using the LDB test, and it was found to have anxiolytic-like properties at low concentrations. To assess the potential contribution of the glutamate and cholinergic mechanisms in the effects of the CCAMs, we conducted experiments with pre-exposure to putative antagonists, NMDA and biperiden. Neither biperiden nor NMDA were able to diminish or cancel the effects of the CCAMs, countering the in vitro data obtained in previous studies. The apparent discrepancy could be related to the specifics of CCAM metabolism or to the interspecies differences between the putative target proteins, possibly due to the relatively low identity percentage of their sequences. Although further research in mammals is required in order to establish their pharmacological properties, novel CCAMs may represent an appealing group of psychoactive drug candidates.

4.
Int J Mol Sci ; 23(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36076956

ABSTRACT

Empagliflozin, an inhibitor of sodium-glucose co-transporter 2 (iSGLT2), improves cardiovascular outcomes in patients with and without diabetes and possesses an antiarrhythmic activity. However, the mechanisms of these protective effects have not been fully elucidated. This study aimed to explore the impact of empagliflozin on ion channel activity and electrophysiological characteristics in the ventricular myocardium. The main cardiac ionic currents (INa, ICaL, ICaT, IKr, IKs) and action potentials (APs) were studied in zebrafish. Whole-cell currents were measured using the patch clamp method in the isolated ventricular cardiomyocytes. The conventional sharp glass microelectrode technique was applied for the recording of APs from the ventricular myocardium of the excised heart. Empagliflozin pretreatment compared to the control group enhanced potassium IKr step current density in the range of testing potentials from 0 to +30 mV, IKr tail current density in the range of testing potentials from +10 to +70 mV, and IKs current density in the range of testing potentials from -10 to +20 mV. Moreover, in the ventricular myocardium, empagliflozin pretreatment shortened AP duration APD as shown by reduced APD50 and APD90. Empagliflozin had no influence on sodium (INa) and L- and T-type calcium currents (ICaL and ICaT) in zebrafish ventricular cardiomyocytes. Thus, we conclude that empagliflozin increases the rapid and slow components of delayed rectifier K+ current (IKr and IKs). This mechanism could be favorable for cardiac protection.


Subject(s)
Sodium-Glucose Transporter 2 Inhibitors , Zebrafish , Action Potentials , Animals , Benzhydryl Compounds , Glucosides , Heart Ventricles/metabolism , Myocytes, Cardiac/metabolism , Potassium/metabolism , Potassium Channels , Sodium/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Zebrafish/metabolism
5.
Int J Mol Sci ; 23(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36012534

ABSTRACT

Glycogen is an easily accessible source of energy for various processes. In hepatocytes, it can be found in the form of individual molecules (ß-particles) and their agglomerates (α-particles). The glycogen content in hepatocytes depends on the physiological state and can vary due to the size and number of the particles. Using biochemical, cytofluorometric, interferometric and morphometric methods, the number of ß-particles in rat hepatocytes was determined after 48 h of fasting at different time intervals after glucose refeeding. It has been shown that after starvation, hepatocytes contain ~1.6 × 108 ß-particles. During refeeding, their number of hepatocytes gradually increases and reaches a maximum (~5.9 × 108) at 45 min after glucose administration, but then quickly decreases. The data obtained suggest that in cells there is a continuous synthesis and degradation of particles, and at different stages of life, one or another process predominates. It has been suggested that in the course of glycogenesis, pre-existing ß-particles are replaced by those formed de novo. The main contribution to the deposition of glycogen is made by an increase in the glucose residue number in its molecules. The average diameter of ß-particles of glycogen during glycogenesis increases from ~11 nm to 21 nm.


Subject(s)
Glycogen , Starvation , Animals , Fasting , Glucose/metabolism , Glycogen/metabolism , Hepatocytes/metabolism , Liver/metabolism , Rats , Starvation/metabolism
6.
Neurol Int ; 14(3): 547-560, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35893279

ABSTRACT

Objectives. Ischemic stroke is a leading cause of death and disability worldwide. To search for new therapeutic and pharmacotherapeutic strategies, numerous models of this disease have been proposed, the most popular being transient middle cerebral artery occlusion. Behavioral and sensorimotor testing, biochemical, and histological methods are traditionally used in conjunction with this model to assess the effectiveness of potential treatment options. Despite its wide overall popularity, electroencephalography/electrocorticography is quite rarely used in such studies. Materials and methods. In the present work, we explored the changes in brain electrical activity at days 3 and 7 after 30- and 45-min of transient middle cerebral artery occlusion in rats. Results. Cerebral ischemia altered the amplitude and spectral electrocorticogram characteristics, and led to a reorganization of inter- and intrahemispheric functional connections. Ischemia duration affected the severity as well as the nature of the observed changes. Conclusions. The dynamics of changes in brain electrical activity may indicate a spontaneous partial recovery of impaired cerebral functions at post-surgery day 7. Our results suggest that electrocorticography can be used successfully to assess the functional status of the brain following ischemic stroke in rats as well as to investigate the dynamics of functional recovery.

7.
Biomedicines ; 10(2)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35203484

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), or metabolic (dysfunction)-associated fatty liver disease (MAFLD), is characterized by high global incidence and prevalence, a tight association with common metabolic comorbidities, and a substantial risk of progression and associated mortality. Despite the increasingly high medical and socioeconomic burden of NAFLD, the lack of approved pharmacotherapy regimens remains an unsolved issue. In this paper, we aimed to provide an update on the rapidly changing therapeutic landscape and highlight the major novel approaches to the treatment of this disease. In addition to describing the biomolecules and pathways identified as upcoming pharmacological targets for NAFLD, we reviewed the current status of drug discovery and development pipeline with a special focus on recent evidence from clinical trials.

8.
Brain Sci ; 11(8)2021 Jul 25.
Article in English | MEDLINE | ID: mdl-34439602

ABSTRACT

The search for and development of new neuroprotective (or cerebroprotective) drugs, as well as suitable methods for their preclinical efficacy evaluation, are priorities for current biomedical research. Alpha-2 adrenergic agonists, such as mafedine and dexmedetomidine, are a highly appealing group of drugs capable of reducing neurological deficits which result from brain trauma and vascular events in both experimental animals and human patients. Thus, our aim was to assess the effects of mafedine and dexmedetomidine on the brain's electrical activity in a controlled cortical-impact model of traumatic brain injury (TBI) in rats. The functional status of the animals was assessed by electrocorticography (ECoG), using ECoG electrodes which were chronically implanted in different cortical regions. The administration of intraperitoneal mafedine sodium at 2.5 mg∙kg-1 at 1 h after TBI induction, and daily for the following 6 days, restored interhemispheric connectivity in remote brain regions and intrahemispheric connections within the unaffected hemisphere at post-TBI day 7. Animals that had received mafedine sodium also demonstrated an improvement in cortical responses to photic and somatosensory stimulation. Dexmedetomidine at 25 µg∙kg-1 did not affect the brain's electrical activity in brain-injured rats. Our results confirm the previously described neuroprotective effects of mafedine sodium and suggest that ECoG registration and analysis are a viable method evaluating drug efficacy in experimental animal models of TBI.

9.
Int J Mol Sci ; 22(11)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063987

ABSTRACT

The effects of the selective sodium-glucose cotransporter 2 (SGLT2) inhibitor empagliflozin in low dose on cardiac function were investigated in normoglycemic rats. Cardiac parameters were measured by intracardiac catheterization 30 min after intravenous application of empagliflozin to healthy animals. Empagliflozin increased the ventricular systolic pressure, mean pressure, and the max dP/dt (p < 0.05). Similarly, treatment with empagliflozin (1 mg/kg, p.o.) for one week increased the cardiac output, stroke volume, and fractional shortening (p < 0.05). Myocardial infarction (MI) was induced by ligation of the left coronary artery. On day 7 post MI, empagliflozin (1 mg/kg, p.o.) improved the systolic heart function as shown by the global longitudinal strain (-21.0 ± 1.1% vs. -16.6 ± 0.7% in vehicle; p < 0.05). In peri-infarct tissues, empagliflozin decreased the protein expression of matrix metalloproteinase 9 (MMP9) and favorably regulated the cardiac transporters sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) and sodium hydrogen exchanger 1 (NHE1). In H9c2 cardiac cells, empagliflozin decreased the MMP2,9 activity and prevented apoptosis. Empagliflozin did not alter the arterial stiffness, blood pressure, markers of fibrosis, and necroptosis. Altogether, short-term treatment with low-dose empagliflozin increased the cardiac contractility in normoglycemic rats and improved the systolic heart function in the early phase after MI. These effects are attributed to a down-regulation of MMP9 and NHE1, and an up-regulation of SERCA2a. This study is of clinical importance because it suggests that a low-dose treatment option with empagliflozin may improve cardiovascular outcomes post-MI. Down-regulation of MMPs could be relevant to many remodeling processes including cancer disease.


Subject(s)
Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , Matrix Metalloproteinase 9/metabolism , Myocardial Infarction/drug therapy , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Hydrogen Exchanger 1/metabolism , Systole/drug effects , Animals , Cells, Cultured , Down-Regulation/drug effects , Fibrosis/drug therapy , Fibrosis/metabolism , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Male , Myocardial Infarction/metabolism , Myocardium/metabolism , Rats , Rats, Wistar , Up-Regulation/drug effects , Ventricular Function, Left , Ventricular Remodeling/drug effects
10.
Cells ; 10(5)2021 04 21.
Article in English | MEDLINE | ID: mdl-33919385

ABSTRACT

Chronic hepatitises of various etiologies are widespread liver diseases in humans. Their final stage, liver cirrhosis (LC), is considered to be one of the main causes of hepatocellular carcinoma (HCC). About 80-90% of all HCC cases develop in LC patients, which suggests that cirrhotic conditions play a crucial role in the process of hepatocarcinogenesis. Carbohydrate metabolism in LC undergoes profound disturbances characterized by altered glycogen metabolism. Unfortunately, data on the glycogen content in LC are few and contradictory. In this study, the material was obtained from liver biopsies of patients with LC of viral and alcohol etiology and from the liver tissue of rats with CCl4-induced LC. The activity of glycogen phosphorylase (GP), glycogen synthase (GS), and glucose-6-phosphatase (G6Pase) was investigated in human and rat liver tissue by biochemical methods. Total glycogen and its labile and stable fractions were measured in isolated individual hepatocytes, using the cytofluorometry technique of PAS reaction in situ. The development of LC in human and rat liver was accompanied by an increase in fibrous tissue (20- and 8.8-fold), an increase in the dry mass of hepatocytes (by 25.6% and 23.7%), and a decrease in the number of hepatocytes (by 50% and 28%), respectively. The rearrangement of the liver parenchyma was combined with changes in glycogen metabolism. The present study showed a significant increase in the glycogen content in the hepatocytes of the human and the rat cirrhotic liver, by 255% and 210%, respectively. An increased glycogen content in cells of the cirrhotic liver can be explained by a decrease in glycogenolysis due to a decreased activity of G6Pase and GP.


Subject(s)
Carcinoma, Hepatocellular , Glycogen/metabolism , Hepatocytes , Liver Cirrhosis , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/metabolism , Child , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver Cirrhosis/complications , Liver Cirrhosis/metabolism , Liver Neoplasms/etiology , Liver Neoplasms/metabolism , Male , Rats
11.
Cells ; 9(11)2020 10 24.
Article in English | MEDLINE | ID: mdl-33114455

ABSTRACT

Alzheimer's disease and cerebral ischemia are among the many causative neurodegenerative diseases that lead to disabilities in the middle-aged and elderly population. There are no effective disease-preventing therapies for these pathologies. Recent in vitro and in vivo studies have revealed the TRPC6 channel to be a promising molecular target for the development of neuroprotective agents. TRPC6 channel is a non-selective cation plasma membrane channel that is permeable to Ca2+. Its Ca2+-dependent pharmacological effect is associated with the stabilization and protection of excitatory synapses. Downregulation as well as upregulation of TRPC6 channel functions have been observed in Alzheimer's disease and brain ischemia models. Thus, in order to protect neurons from Alzheimer's disease and cerebral ischemia, proper TRPC6 channels modulators have to be used. TRPC6 channels modulators are an emerging research field. New chemical structures modulating the activity of TRPC6 channels are being currently discovered. The recent publication of the cryo-EM structure of TRPC6 channels should speed up the discovery process even more. This review summarizes the currently available information about potential drug candidates that may be used as basic structures to develop selective, highly potent TRPC6 channel modulators to treat neurodegenerative disorders, such as Alzheimer's disease and cerebral ischemia.


Subject(s)
Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Brain Ischemia/etiology , Brain Ischemia/metabolism , TRPC6 Cation Channel/deficiency , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Animals , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Disease Management , Disease Susceptibility , Drug Discovery , Gene Expression Regulation/drug effects , Humans , Molecular Targeted Therapy , Risk Factors , Signal Transduction/drug effects , TRPC6 Cation Channel/antagonists & inhibitors , TRPC6 Cation Channel/genetics , TRPC6 Cation Channel/metabolism
12.
Naunyn Schmiedebergs Arch Pharmacol ; 393(9): 1649-1658, 2020 09.
Article in English | MEDLINE | ID: mdl-32377771

ABSTRACT

The study aimed to investigate the effects of the sodium-glucose co-transporter 2 (SGLT2) inhibitor empagliflozin on chronic heart failure (HF) in normoglycemic rats. The effects of empagliflozin were compared with the standard medications for HF, e.g., angiotensin-converting enzyme (ACE) inhibitor fosinopril, beta-blocker bisoprolol, and aldosterone antagonist spironolactone. Myocardial infarction (MI) was induced in male Wistar rats via permanent ligation of the left descending coronary artery. One-month post MI, 50 animals were randomized into 5 groups (n = 10): vehicle-treated, empagliflozin (1.0 mg/kg), fosinopril (10 mg/kg), bisoprolol (10 mg/kg), and spironolactone (20 mg/kg). All medications except empagliflozin were titrated within a month and administered per os daily for 3 months. Echocardiography, 24-hour urine volume test, and treadmill exercise tests were performed at the beginning and at the end of the study. Treatment with empagliflozin slowed the progression of left ventricular dysfunction: LV sizes and ejection fraction were not changed and the minute volume was significantly increased (from 52.0 ± 15.5 to 61.2 ± 21.2 ml/min) as compared with baseline. No deaths occurred in empagliflozin group. The 24-hour urine volume tends to be higher in empagliflozin and spironolactone groups than in vehicle and fosinopril group. Moreover, empagliflozin exhibited maximal physical exercise tolerance in comparison with all investigated groups (289 ± 27 s versus 183 ± 61 s in fosinopril group, 197 ± 95 s in bisoprolol group, and 47 ± 46 s in spironolactone group, p = 0.0035 for multiple comparisons). Sodium-glucose co-transporter 2 inhibitor empagliflozin reduced progression of left ventricular dysfunction and improved tolerance of physical exercise in normoglycemic rats with HF. Empagliflozin treatment was superior with respect to physical tolerance compared with fosinopril, bisoprolol, and spironolactone.


Subject(s)
Benzhydryl Compounds/pharmacology , Cardiovascular Agents/pharmacology , Exercise Tolerance/drug effects , Glucosides/pharmacology , Heart Failure/drug therapy , Myocardial Infarction/complications , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Ventricular Dysfunction, Left/drug therapy , Ventricular Function, Left/drug effects , Animals , Bisoprolol/pharmacology , Chronic Disease , Disease Models, Animal , Fosinopril/pharmacology , Heart Failure/etiology , Heart Failure/physiopathology , Male , Rats, Wistar , Spironolactone/pharmacology , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/physiopathology
13.
J Exp Pharmacol ; 11: 53-63, 2019.
Article in English | MEDLINE | ID: mdl-31354367

ABSTRACT

Objectives: To prove that our novel ethanolamine derivative (FDES) can normalize overall movement and exploratory activity of rats with traumatic brain injury (TBI) owing to its peculiar properties. Materials and methods: TBI was modeled using controlled cortical impact injury (CCI) model method. The resulting neurological deficit, efficacy of the novel agent and other reference agents used were assayed in tests which evaluated overall movements and exploratory behavior of the rats. Finally, scopolamine in equimolar dose was used to estimate the role of cholinergic system in the efficacy of our agent. The tests included: limb-placing, open field, elevated plus maze, cylinder, and beam walking tests. Results: Intraperitoneal administration of FDES at a dose of 10 mg/kg led to improvement of fore- and hind-limb functions of rats with traumatic brain injury as was shown in "Limb placing", "Open field" "Cylinder" and "Beam walking" tests. The new agent had no effects on traumatized rats behavior in the "Elevated Plus Maze" test. Simultaneous co-administration of scopolamine with FDES reduced the beneficial effects of the latter in rats with trauma. Conclusion: The neuroprotective effects of new agent were manifested in the reduction of motor deficiencies, and exploratory activity in the CCI model rats. In comparison with choline alfoscerate and citicoline, FDES showed more beneficial effects as were observed in most of the tests, and did not negatively influence the traumatized rats psychologically. Notably, it is possible that the neuroprotective influence of the new agent is mediated by its actions on the cholinergic system.

14.
Neurosci Lett ; 701: 234-239, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30836120

ABSTRACT

Pharmacological agents acting at alpha-2 adrenergic receptors are widely used in physiology and neuroscience research. Mounting evidence of their potential utility in clinical and experimental psychopharmacology, necessitates new models and novel model organisms for their screening. Here, we characterize behavioral effects of mafedine (6-oxo-1-phenyl-2- (phenylamino)-1,6-dihydropyrimidine-4-sodium olate), a novel drug with alpha-2 adrenergic receptor agonistic effects, in adult zebrafish (Danio rerio) in the novel tank test of anxiety and activity. Following an acute 20-min exposure, mafedine at 60 mg/L produced a mild psychostimulant action with some anxiogenic-like effects. Repeated acute 20-min/day administration of mafedine for 7 consecutive days at 1, 5 and 10 mg/L had a similar action on fish behavior as an acute exposure to 60 mg/L. Since mafedine demonstrated robust behavioral effects in zebrafish - a sensitive vertebrate aquatic model, it is likely that it may modulate rodent and human behavior as well. Thus, further studies are needed to explore this possibility in detail, and whether it may foster clinical application of mafedine and related alpha-2 adrenergic agents.


Subject(s)
Adrenergic alpha-2 Receptor Agonists/pharmacology , Behavior, Animal/drug effects , Mafenide/pharmacology , Animals , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Zebrafish
15.
Pharmacol Res Perspect ; 6(2): e00389, 2018 04.
Article in English | MEDLINE | ID: mdl-29541475

ABSTRACT

Hepatic insulin resistance and increased gluconeogenesis are known therapeutic targets of metformin, but the role of hepatic glycogen in the pathogenesis of diabetes is less clear. Mouse model of neuropeptide Y (NPY) overexpression in noradrenergic neurons (OE-NPYDßH) with a phenotype of late onset obesity, hepatosteatosis, and prediabetes was used to study early changes in glycogen structure and metabolism preceding prediabetes. Furthermore, the effect of the anti-hyperglycemic agent, metformin (300 mg/kg/day/4 weeks in drinking water), was assessed on changes in glycogen metabolism, body weight, fat mass, and glucose tolerance. Glycogen structure was characterized by cytofluorometric analysis in isolated hepatocytes and mRNA expression of key enzymes by qPCR. OE-NPYDßH mice displayed decreased labile glycogen fraction relative to stabile fraction (the intermediate form of glycogen) suggesting enhanced glycogen cycling. This was supported by decreased filling of glucose residues in the 10th outer tier of the glycogen molecule, which suggests accelerated glycogen phosphorylation. Metformin reduced fat mass gain in both genotypes, but glucose tolerance was improved mostly in wild-type mice. However, metformin inhibited glycogen accumulation and normalized the ratio between glycogen structures in OE-NPYDßH mice indicating decreased glycogen synthesis. Furthermore, the presence of glucose residues in the 11th tier together with decreased glycogen phosphorylase expression suggested inhibition of glycogen degradation. In conclusion, structural changes in glycogen of OE-NPYDßH mice point to increased glycogen metabolism, which may predispose them to prediabetes. Metformin treatment normalizes these changes and suppresses both glycogen synthesis and phosphorylation, which may contribute to its preventive effect on the onset of diabetes.


Subject(s)
Adrenergic Neurons/drug effects , Diabetes Mellitus, Experimental/metabolism , Glycogen/biosynthesis , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Neuropeptide Y/genetics , Prediabetic State/metabolism , Adrenergic Neurons/metabolism , Animals , Hepatocytes/drug effects , Hepatocytes/metabolism , Male , Mice, Transgenic , Phosphorylation , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...