Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 112(11): 112001, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24702353

ABSTRACT

We calculate the kaon semileptonic form factor f+(0) from lattice QCD, working, for the first time, at the physical light-quark masses. We use gauge configurations generated by the MILC Collaboration with Nf = 2 + 1 + 1 flavors of sea quarks, which incorporate the effects of dynamical charm quarks as well as those of up, down, and strange. We employ data at three lattice spacings to extrapolate to the continuum limit. Our result, f+(0) = 0.9704(32), where the error is the total statistical plus systematic uncertainty added in quadrature, is the most precise determination to date. Combining our result with the latest experimental measurements of K semileptonic decays, one obtains the Cabibbo-Kobayashi-Maskawa matrix element |V(us)| = 0.22290(74)(52), where the first error is from f+(0) and the second one is from experiment. In the first-row test of Cabibbo-Kobayashi-Maskawa unitarity, the error stemming from |V(us)| is now comparable to that from |V(ud)|.

2.
Phys Rev Lett ; 109(7): 071802, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-23006357

ABSTRACT

The semileptonic decay channel B→Dτν is sensitive to the presence of a scalar current, such as that mediated by a charged-Higgs boson. Recently, the BABAR experiment reported the first observation of the exclusive semileptonic decay B→Dτ(-)ν, finding an approximately 2σ disagreement with the standard-model prediction for the ratio R(D)=BR(B→Dτν)/BR(B→Dℓν), where ℓ = e,µ. We compute this ratio of branching fractions using hadronic form factors computed in unquenched lattice QCD and obtain R(D)=0.316(12)(7), where the errors are statistical and total systematic, respectively. This result is the first standard-model calculation of R(D) from ab initio full QCD. Its error is smaller than that of previous estimates, primarily due to the reduced uncertainty in the scalar form factor f(0)(q(2)). Our determination of R(D) is approximately 1σ higher than previous estimates and, thus, reduces the tension with experiment. We also compute R(D) in models with electrically charged scalar exchange, such as the type-II two-Higgs-doublet model. Once again, our result is consistent with, but approximately 1σ higher than, previous estimates for phenomenologically relevant values of the scalar coupling in the type-II model. As a by-product of our calculation, we also present the standard-model prediction for the longitudinal-polarization ratio P(L)(D)=0.325(4)(3).

3.
Phys Rev Lett ; 106(6): 061602, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21405456

ABSTRACT

We study the temperature dependence of bottomonium for temperatures in the range 0.4T(c) < T < 2.1T(c), using nonrelativistic dynamics for the bottom quark and full relativistic lattice QCD simulations for Nf = 2 light flavors on a highly anisotropic lattice. We find that the Υ is insensitive to the temperature in this range, while the χb propagators show a crossover from the exponential decay characterizing the hadronic phase to a power-law behavior consistent with nearly free dynamics at T ≃ 2T(c).

4.
Phys Rev Lett ; 94(1): 011601, 2005 Jan 14.
Article in English | MEDLINE | ID: mdl-15698062

ABSTRACT

We present the first three-flavor lattice QCD calculations for D-->pilnu and D-->Klnu semileptonic decays. Simulations are carried out using ensembles of unquenched gauge fields generated by the MILC Collaboration. With an improved staggered action for light quarks, we are able to simulate at light quark masses down to 1/8 of the strange mass. Consequently, the systematic error from the chiral extrapolation is much smaller than in previous calculations with Wilson-type light quarks. Our results for the form factors at q(2)=0 are f(D-->pi)(+)(0)=0.64(3)(6) and f(D-->K)(+)(0)=0.73(3)(7), where the first error is statistical and the second is systematic, added in quadrature. Combining our results with experimental branching ratios, we obtain the Cabibbo-Kobayashi-Maskawa matrix elements |V(cd)|=0.239(10)(24)(20) and |V(cs)|=0.969(39)(94)(24), where the last errors are from experimental uncertainties.

SELECTION OF CITATIONS
SEARCH DETAIL
...