Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Front Psychiatry ; 12: 623684, 2021.
Article in English | MEDLINE | ID: mdl-33679481

ABSTRACT

Several mood-stabilizing atypical antipsychotics and antidepressants weakly block serotonin (5-HT) receptor type-7 (5-HT7R); however, the contributions of 5-HT7R antagonism to clinical efficacy and pathophysiology are yet to be clarified. A novel mood-stabilizing antipsychotic agent, lurasidone exhibits predominant binding affinity to 5-HT7R when compared with other monoamine receptors. To date, we have failed to discover the superior clinical efficacy of lurasidone on schizophrenia, mood, or anxiety disorders when compared with conventional mood-stabilizing atypical antipsychotics; however, numerous preclinical findings have indicated the possible potential of 5-HT7R antagonism against several neuropsychiatric disorders, as well as the generation of novel therapeutic options that could not be expected with conventional atypical antipsychotics. Traditional experimental techniques, electrophysiology, and microdialysis have demonstrated that the effects of 5-HT receptor type-1A (5-HT1AR) and 5-HT7R on neurotransmission are in contrast, but the effect of 5-HT1AR is more predominant than that of 5-HT7R, resulting in an insufficient understanding of the 5-HT7R function in the field of psychopharmacology. Accumulating knowledge regarding the pharmacodynamic profiles of 5-HT7R suggests that 5-HT7R is one of the key players in the establishment and remodeling of neural development and cytoarchitecture during the early developmental stage to the mature brain, and dysfunction or modulation of 5-HT7R is linked to the pathogenesis/pathophysiology of neuropsychiatric and neurodevelopmental disorders. In this review, to explore candidate novel applications for the treatment of several neuropsychiatric disorders, including mood disorders, schizophrenia, and other cognitive disturbance disorders, we discuss perspectives of psychopharmacology regarding the effects of 5-HT7R antagonism on transmission and intracellular signaling systems, based on preclinical findings.

3.
Pharmaceuticals (Basel) ; 13(4)2020 Mar 29.
Article in English | MEDLINE | ID: mdl-32235384

ABSTRACT

To study the pathomechanism and pathophysiology of autosomal dominant sleep-related hypermotor epilepsy (ADSHE), this study determined functional abnormalities of glutamatergic transmission in the thalamocortical motor pathway, from the reticular thalamic nucleus (RTN), motor thalamic nuclei (MoTN) tosecondary motor cortex (M2C) associated with the S286L-mutant α4ß2-nicotinic acetylcholine receptor (nAChR) and the connexin43 (Cx43) hemichannel of transgenic rats bearing the rat S286L-mutant Chrna4 gene (S286L-TG), which corresponds to the human S284L-mutant CHRNA4 gene using multiprobe microdialysis, primary cultured astrocytes and a Simple Western system. Expression of Cx43 in the M2C plasma membrane fraction of S286L-TG was upregulated compared with wild-type rats. Subchronic nicotine administration decreased Cx43 expression of wild-type, but did not affect that of S286L-TG; however, zonisamide (ZNS) decreased Cx43 in both wild-type and S286L-TG. Primary cultured astrocytes of wild-type were not affected by subchronic administration of nicotine but was decreased by ZNS. Upregulated Cx43 enhanced glutamatergic transmission during both resting and hyperexcitable stages in S286L-TG. Furthermore, activation of glutamatergic transmission associated with upregulated Cx43 reinforced the prolonged Cx43 hemichannel activation. Subchronic administration of therapeutic-relevant doses of ZNS compensated the upregulation of Cx43 and prolonged reinforced activation of Cx43 hemichannel induced by physiological hyperexcitability during the non-rapid eye movement phase of sleep. The present results support the primary pathomechanisms and secondary pathophysiology of ADSHE seizures of patients with S284L-mutation.

4.
Cells ; 9(2)2020 02 11.
Article in English | MEDLINE | ID: mdl-32054069

ABSTRACT

Clozapine (CLZ) is a gold-standard antipsychotic against treatment-refractory schizophrenia, but is one of the most toxic antipsychotic agents. Pharmacological mechanisms of the double-edged sword clinical action of CLZ remain to be clarified. To explore the mechanisms of CLZ, the present study determined the astroglial transmission associated with connexin43 (Cx43), which is the most principal expression in astrocytes and myocardial cells, and expression of Cx43 in primary cultured astrocytes. Both acute and subchronic administrations of CLZ concentration-dependently increased Cx43-associated astroglial release of l-glutamate and d-serine, whereas therapeutic-relevant concentration of CLZ acutely did not affect but subchronically increased astroglial release. In contrast, after the subchronic administration of therapeutic-relevant concentration of valproate (VPA), acute administration of therapeutic-relevant concentration of CLZ drastically increased Cx43-associated astroglial releases. VPA increased Cx43 expression in cytosol fraction without affecting plasma membrane fraction, whereas CLZ increased Cx43 expression in both fractions. Acute administration of therapeutic-relevant concentration of CLZ drastically increased Cx43 expression in the plasma membrane fraction of astrocytes subchronically treated with VPA. The present findings suggest that CLZ-induced the activation of Cx43-associated channel activity and transported Cx43 to plasma membrane, probably contribute to the double-edged sword clinical action of CLZ, such as improvement of cognitive dysfunction and CLZ-induced myocarditis.


Subject(s)
Clozapine/adverse effects , Connexin 43/genetics , Myocarditis/genetics , Schizophrenia/metabolism , Antipsychotic Agents/adverse effects , Antipsychotic Agents/pharmacology , Astrocytes/drug effects , Astrocytes/pathology , Cell Membrane/drug effects , Clozapine/pharmacology , Glutamic Acid/metabolism , Humans , Myocarditis/chemically induced , Myocarditis/metabolism , Myocarditis/pathology , Schizophrenia/complications , Schizophrenia/drug therapy , Serine/metabolism , Valproic Acid/metabolism
5.
Int J Mol Sci ; 20(24)2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31835640

ABSTRACT

Vortioxetine is a novel, multimodal antidepressant with unique targets, including the inhibition of the serotonin transporter (SET), of serotonin 5-HT3 (5-HT3R), and of 5-HT7 (5-HT7R) receptors and partial agonism to serotonin 5-HT1A (5-HT1AR) receptors in humans. Vortioxetine has a lower affinity to 5-HT1AR and 5-HT7R in rats compared with humans, but several behavior studies have demonstrated its powerful antidepressant-like actions. In spite of these efforts, detailed effects of the subchronic administration of vortioxetine on serotonergic transmission remain to be clarified. This study examined the mechanisms underlying the clinical effects of vortioxetine by measuring the releases of 5-HT and GABA in the medial prefrontal cortex (mPFC) of freely moving rats compared with the selective SET inhibitor, escitalopram. Inhibition of 5-HT3R in the mPFC enhanced regional 5-HT release via GABAergic disinhibition. Activation of somatodendritic 5-HT1AR in the dorsal raphe nucleus (DRN) and presynaptic 5-HT1AR in the mPFC inhibited 5-HT release in the mPFC. Escitalopram subchronically activated mesocortical serotonergic transmission via desensitization of 5-HT1AR in the mPFC and DRN and of 5-HT3R in the mPFC; however, vortioxetine also subchronically activated mesocortical serotonergic transmission via desensitization of 5-HT1AR in the mPFC and DRN but not of 5-HT3R in the mPFC. These demonstrations, the desensitization of 5-HT1AR with the inhibition of 5-HT3R (without 5-HT3R desensitization), at least partially, contribute to the multimodal antidepressant action of vortioxetine in rats.


Subject(s)
Prefrontal Cortex/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Serotonin, 5-HT3/metabolism , Vortioxetine/administration & dosage , Animals , Citalopram/administration & dosage , Citalopram/pharmacology , Male , Rats , Serotonin/metabolism , Selective Serotonin Reuptake Inhibitors , Vortioxetine/pharmacology , gamma-Aminobutyric Acid/metabolism
6.
Pharmaceuticals (Basel) ; 12(4)2019 Oct 06.
Article in English | MEDLINE | ID: mdl-31590422

ABSTRACT

Lurasidone is an atypical mood-stabilizing antipsychotic agent with unique receptor-binding profile, including 5-HT7 receptor (5-HT7R) antagonism. Effects of 5-HT7R antagonism on transmitter systems of schizophrenia and mood disorders, however, have not been well clarified. Thus, this study examined the mechanisms underlying the clinical effects of lurasidone by measuring mesocortical serotonergic transmission. Following systemic and local administrations of lurasidone, MK801 and 5-HT receptor modulators, we determined releases of 5-HT in dorsal raphe nucleus (DRN), mediodorsal thalamic nucleus (MDTN) and medial prefrontal cortex (mPFC) and γ-aminobutyric acid (GABA) in DRN using multiprobe microdialysis with ultra-high-performance liquid chromatography (UHPLC). Serotonergic and GABAergic neurons in the DRN are predominantly regulated by inhibitory 5-HT1A receptor (5-HT1AR) and excitatory 5-HT7R, respectively. Lurasidone acutely generates GABAergic disinhibition by 5-HT7R antagonism, but concomitant its 5-HT1AR agonism prevents serotonergic hyperactivation induced by 5-HT7R inhibition. During treatments with 5-HT1AR antagonist in DRN, lurasidone dose-dependently increased 5-HT release in the DRN, MDTN and mPFC. Contrary, lurasidone chronically enhanced serotonergic transmission and GABAergic disinhibition in the DRN by desensitizing both 5-HT1AR and 5-HT7R. These effects of lurasidone acutely prevented MK801-evoked 5-HT release by GABAergic disinhibition via N-methyl-D-aspartate (NMDA)/glutamate receptor (NMDA-R)-mediated inhibition of 5-HT1AR function, but enhanced MK801-induced 5-HT release by desensitizing 5-HT1AR and 5-HT7R. These results indicate that acutely lurasidone fails to affect 5-HT release, but chronically enhances serotonergic transmission by desensitizing both 5-HT1AR and 5-HT7R. These unique properties of lurasidone ameliorate the dysfunctions of NMDA-R and augment antidepressive effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...