Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Pharm Health Care Sci ; 9(1): 40, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38082356

ABSTRACT

BACKGROUND: A reduction in the brain-derived neurotrophic factor (BDNF) level in the brain causes depression, whereas an increase in its level has therapeutic benefits against depression. BDNF is synthesized in various peripheral tissues and transported to the brain via the peripheral circulation across the blood-brain barrier. Therefore, substances that upregulate peripheral BDNF level may be used to prevent and treat depression. Previously, we demonstrated that Citrus unshiu peel (Chinpi) and C. natsudaidai increased BDNF level in a human renal adenocarcinoma cell line ACHN, which has BDNF-producing ability. Here, we evaluated whether Shiikuwasha (C. depressa Hayata), a citrus species cultivated in East Asia, can upregulate BDNF level in ACHN cells. METHODS: We evaluated the effects of test samples on BDNF production by measuring BDNF level in the medium of ACHN cells after a 24 h cultivation in the presence of test samples. The BDNF mRNA level was measured by quantitative reverse transcription-polymerase chain reaction, and the phosphorylation level of cyclic adenosine monophosphate response element-binding protein (CREB), a transcription factor regulating BDNF expression, was determined using Western blotting. RESULTS: We found that methanol extracts of Shiikuwasha peel, pulp, and seed increased the BDNF level in the culture medium of ACHN cells. Shiikuwasha peel and pulp extracts also upregulated BDNF mRNA level and phosphorylation of CREB. CONCLUSIONS: These results suggest that Shiikuwasha includes the candidate antidepressant substances with peripheral BDNF-upregulation effect.

2.
J Oleo Sci ; 72(2): 245-255, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36631105

ABSTRACT

The increase in brain-derived neurotrophic factor (BDNF) in the brain is beneficial for the treatment of depression, Alzheimer's disease (AD), and Parkinson's disease (PD); BDNF can cross the blood-brain barrier. Therefore, foods that elevate BDNF concentration in peripheral tissues may increase BDNF in the brain and thereby induce preventive and therapeutic effects against depression, AD, and PD. In this study, we aimed to determine whether Citrus natsudaidai extracts can increase BDNF concentration using the human kidney adenocarcinoma cell line ACHN, which has BDNF-producing and -secreting abilities. As test samples, methanol extracts of C. natsudaidai peel and pulp, and their n-hexane, ethyl acetate, n-butanol, and water fractions were prepared. The BDNF concentrations in culture medium of ACHN cells were assayed after 24 h cultivation in the presence of test samples. Compared with that of control (non-treated) cells, the BDNF concentration increased in the culture medium of ACHN cells treated with the methanol extract of C. natsudaidai peel and its hexane, butanol, and water fractions, as well as the butanol and water fractions of the pulp extract. Quantitative reverse transcription-polymerase chain reaction analysis revealed that ACHN cells treated with the butanol fractions of the peel and pulp extracts showed elevated levels of BDNF mRNA compared with those of non-treated cells. C. natsudaidai may increase BDNF concentration by acting on peripheral tissues and could be a medication for the prevention and treatment of depression, AD, and PD.


Subject(s)
Alzheimer Disease , Citrus , Humans , Brain-Derived Neurotrophic Factor/metabolism , Methanol , Alzheimer Disease/drug therapy , Water , Butanols
3.
Life (Basel) ; 11(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34440493

ABSTRACT

Our preliminary screening identified an extract from the rhizome of Dioscorea tokoro, which strongly suppressed the proliferation of HepG2 hepatocellular carcinoma cells and inhibited autophagy. This study aimed to isolate active compounds from the rhizome of D. tokoro that exert antiproliferative effects and inhibit autophagy. The bioassay-guided fractionation of the active fraction led to the isolation of two spirostan-type steroidal saponins, dioscin (1) and yamogenin 3-O-α-l-rhamnopyranosyl (1→4)-O-α-l-rhamnopyranosyl(1→2)-ß-d-glucopyranoside (2), and the frostane-type steroidal saponin protodioscin (3) from the n-BuOH fraction. Furthermore, acid hydrolysis of 1 and 2 produced the aglycones diosgenin (4) and yamogenin (5), respectively. Compounds 1-5 suppressed proliferation of HepG2 cells. The analysis of structure-activity relationships indicated that the 25(R)-conformation, structures with a sugar moiety, and the spirostan-type aglycone moiety contributed to antiproliferative activity. Analysis of autophagy-related proteins demonstrated that 1-3 clearly increased the levels of both LC3-II and p62, implying that 1-3 deregulate the autophagic pathway by blocking autophagic flux, which results in p62 and LC3-II accumulation. In contrast, 1-3 did not significantly affect caspase-3 activation and PARP cleavage, suggesting that the antiproliferative activity of 1-3 occurred independently of caspase-3-mediated apoptosis. In summary, our study showed that 1-3, active compounds in the rhizome of D. tokoro, suppressed cell proliferation and autophagy, and might be potential agents for autophagy research and cancer chemoprevention.

4.
Appl Microbiol Biotechnol ; 105(10): 4177-4187, 2021 May.
Article in English | MEDLINE | ID: mdl-33944982

ABSTRACT

Bioconversion using microorganisms and their enzymes is an important tool in many industrial fields. The discovery of useful new microbial enzymes contributes to the development of industries utilizing bioprocesses. Streptomyces sp. EAS-AB2608, isolated from a soil sample collected in Japan, can convert the tetrahydrobenzotriazole CPD-1 (a selective positive allosteric modulator of metabotropic glutamate receptor 5) to its hydroxylated form at the C4-(R) position. The current study was performed to identify the genes encoding the enzymes involved in CPD-1 bioconversion and to verify their function. To identify gene products responsible for the conversion of CPD-1, we used RNA sequencing to analyze EAS-AB2608; from its 8333 coding sequences, we selected two genes, one encoding cytochrome P450 (easab2608_00800) and the other encoding ferredoxin (easab2608_00799), as encoding desirable gene products involved in the bioconversion of CPD-1. The validity of this selection was tested by using a heterologous expression approach. A bioconversion assay using genetically engineered Streptomyces avermitilis SUKA24 ∆saverm3882 ∆saverm7246 co-expressing the two selected genes (strain ES_SUKA_63) confirmed that these gene products had hydroxylation activity with respect to CPD-1, indicating that they are responsible for the conversion of CPD-1. Strain ES_SUKA_63 also showed oxidative activity toward other compounds and therefore might be useful not only for bioconversion of CPD-1 but also as a tool for synthesis of drug metabolites and in optimization studies of various pharmaceutical lead compounds. We expect that this approach will be useful for bridging the gap between the latest enzyme optimization technologies and conventional enzyme screening using microorganisms. KEY POINTS: • Genes easab2608_00800 (cyp) and easab2608_00799 (fdx) were selected by RNA-Seq. • Selection validity was evaluated by an engineered S. avermitilis expression system. • Strain ES_SUKA_63 showed oxidative activity toward CPD-1 and other compounds.


Subject(s)
Ferredoxins , Streptomyces , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Japan , Streptomyces/genetics , Streptomyces/metabolism
5.
Acta Neurobiol Exp (Wars) ; 81(4): 393-404, 2021.
Article in English | MEDLINE | ID: mdl-35014988

ABSTRACT

The neurotrophic hypothesis of depression, which suggests that decreased hippocampal brain­derived neurotrophic factor (BDNF) levels cause depression, has become increasingly popular. BDNF, a member of the neurotrophin family, promotes neuronal differentiation and survival. BDNF is synthesized in various peripheral tissues, as well as in the brain. Considering that peripheral BDNF can be transported into the brain across the blood­brain barrier, substances with the ability to upregulate BDNF activity in peripheral tissues may be useful in the management of depression. Previously, we demonstrated that the human kidney adenocarcinoma cell line ACHN produces BDNF; hence, this cell line was employed for screening upregulators of peripheral BDNF. Here, we aimed to identify Kampo (traditional Japanese) medicines and their crude drug components that upregulate BDNF levels using ACHN cells. Chotosan, Hochuekkito, Kososan, and Ninjinyoeito, Kampo medicines used in treating psychiatric disorders, increased BDNF levels in the culture media of ACHN cells. Furthermore, Chinpi (Citrus unshiu peel), a crude drug contained in these four Kampo medicines, as well as Onji (Polygala tenuifolia root), and Saiko (Bupleurum falcatum root) elevated BDNF levels in ACHN cells. Chinpi, showing strong BDNF elevating effect, increased BDNF mRNA expression. Inhibitors of protein kinase B, mitogen­activated protein kinase kinase, and cAMP­dependent protein kinase, involved in the transcription of BDNF, attenuated Chinpi­induced BDNF elevation. Our results suggest that Chinpi and Kampo medicines containing Chinpi can promote the production of BDNF in peripheral tissues, potentially alleviating depression symptoms.


Subject(s)
Brain-Derived Neurotrophic Factor , Medicine, Kampo , Bupleurum , Humans , Japan , Plant Extracts
6.
J Nat Med ; 75(1): 240-245, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33159250

ABSTRACT

Autophagy is a catabolic process for degradation of intracellular components and plays an important role in the development and growth of cancer. Our preliminary screening confirmed that an extract from the root of Saussurea lappa remarkably suppressed the proliferation of HepG2 hepatocellular carcinoma cells and inhibited autophagy. In this study, we explored the effects of costunolide (CL) and dehydrocostuslactone (DCL), which are bioactive sesquiterpene lactones in this extract, on autophagy modulation in HepG2 cells. An analysis of autophagy-related proteins demonstrated that CL and DCL blocks the autophagy process that leads to the accumulation of microtubule-associated protein 1 light chain 3 (LC3) and SQSTM1/p62 (p62). LC3 turnover assays indicated that CL and DCL trigger autophagy inhibition by blocking the autophagic flux, thereby resulting in the accumulation of LC3-II and p62. These results are encouraging and warrant further study of CL and DCL for potential use as autophagy inhibiting agents for liver cancer therapy.


Subject(s)
Autophagy/drug effects , Carcinoma, Hepatocellular/drug therapy , Lactones/chemistry , Liver Neoplasms/drug therapy , Medicine, Kampo/methods , Plant Roots/chemistry , Saussurea/chemistry , Sesquiterpenes/chemistry , Humans
7.
J Nat Med ; 74(3): 525-532, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32207025

ABSTRACT

Autophagy is a catabolic process that degrades dysfunctional proteins and organelles and plays critical roles in cancer development. Our preliminary screening identified that extracts of the fruits of Arctium lappa and the fruits of Forsythia suspensa notably suppressed the proliferation of hepatocellular carcinoma HepG2 cells and downregulated the autophagy. In this study, we explored the effect of arctigenin (ARG), a bioactive lignan in both extracts, on cell proliferation and autophagy-related proteins in HepG2 cells. ARG inhibited the proliferation of HepG2 cells. Analysis of autophagy-related proteins demonstrated that ARG might block the autophagy that leads to sequestosome 1/p62 (p62) accumulation. The stage of inhibition in autophagy by ARG differed from those by the autophagy inhibitors 3-methyladenine (3-MA) or chloroquine (CQ). ARG could also inhibit starvation-induced autophagy. Further analysis of apoptosis-related proteins indicated that ARG did not affect caspase-3 activation and PARP cleavage, suggesting that the antiproliferative effect of ARG can occur independently of apoptosis. In summary, our study showed that ARG suppresses cell proliferation and inhibits autophagy, and might lead to the development of agents for autophagy research and cancer chemoprevention.


Subject(s)
Autophagy/drug effects , Carcinoma, Hepatocellular/pathology , Cell Proliferation/drug effects , Furans/pharmacology , Lignans/pharmacology , Liver Neoplasms/pathology , Adenine/analogs & derivatives , Adenine/pharmacology , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Arctium/chemistry , Cell Line, Tumor , Chloroquine/pharmacology , Forsythia/chemistry , Hep G2 Cells , Humans , Sequestosome-1 Protein
8.
Medicines (Basel) ; 6(2)2019 Jun 03.
Article in English | MEDLINE | ID: mdl-31163644

ABSTRACT

Background: Autophagy is a catabolic process through which dysfunctional proteins and organelles are degraded, and that is associated with the proliferation of cancer cells. The aim of this study was to screen approximately 130 kinds of crude drugs used in Japanese Kampo formulas to identify crude drugs that would regulate the proliferation through autophagy of human hepatocellular carcinoma HepG2 cells. Methods: Extracts of each crude drug were prepared using methanol. Protein levels were determined using Western blotting. Cell viability was measured by MTT assay. Results: Among the 130 crude extracts, 24 of them increased LC3-II expression. Among these, Goboshi (burdock fruit), Soboku (sappan wood), Mokko (saussurea root), Rengyo (forsythia fruit), and Hikai (dioscorea) notably suppressed the proliferation of HepG2 cells and increased p62 expression levels, which suggested that these five extracts downregulate the autophagic activity resulting in the accumulation of p62. On the other hand, Hishinomi (water chestnut), Biwayo (loquat leaf), and Binroji (areca) induced cell growth and decreased or were uninvolved with p62 expression levels, which implied that these three extracts might induce autophagy modulators for cell growth. Conclusions: The results suggest that the compounds contained in the crude drugs selected for this study could control cell viability by regulating autophagic activity in HepG2 cells. The isolation and identification of the active compounds in these drugs might lead to the development of agents for autophagy research and cancer chemoprevention.

9.
Phytother Res ; 32(4): 657-666, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29464799

ABSTRACT

In this study, we found that the hexane fraction of Danshen, the dried root of Salvia miltiorrhiza (Lamiaceae), exerted antiproliferative effects on human leukemia cells. Phytochemical investigation of the hexane fraction achieved the isolation of the tanshinone diterpenes: dihydrotanshinone I (1), trijuganone C (2), trijuganone B (3), cryptotanshinone (4), tanshinone IIA (5), and tanshinone I (6). Compound 2 showed significant antiproliferative activities against human leukemia cells HL-60, Jurkat, and U937. The antiproliferative activities of 2 against human cancer and normal cells indicated that 2 exhibited potent antiproliferative activities with IC50 values less than 10 µM against HL-60 and Jurkat cells as well as on the colon cancer cells DLD-1, COLO 205, and Caco-2. Compound 2 induced chromatin condensation, DNA fragmentation, activation of caspase-3, -8, and -9, and the cleavage of poly (ADP-ribose) polymerase (PARP) in HL-60 cells. Moreover, 2 activated Bid and Bax, leading to the loss of mitochondrial membrane potential, and 2 induced the cytochrome c release from mitochondria into cytosol. In contrast, Bcl-2 and Bcl-xL were unaffected by 2. These results suggest that 2 exerts antiproliferative effects via apoptosis induction mediated by mitochondrial dysfunction and caspase activation. Compound 2 may serve as a candidate of potential chemotherapeutic agent for human leukemia.


Subject(s)
Phenanthrenes/chemistry , Plant Roots/chemistry , Salvia miltiorrhiza/chemistry , Apoptosis , Humans
10.
Am J Chin Med ; 45(7): 1497-1511, 2017.
Article in English | MEDLINE | ID: mdl-29025293

ABSTRACT

Berberine (BBR), an isoquinoline alkaloid, is a well-known bioactive compound contained in medicinal plants used in traditional and folk medicines. In this study, we investigated the subcellular localization and the apoptotic mechanisms of BBR were elucidated. First, we confirmed the incorporation of BBR into the cell visually. BBR showed antiproliferative activity and promptly localized to the nucleus from 5[Formula: see text]min to 15[Formula: see text]min after BBR treatment in HL-60 human promyelocytic leukemia cells. Next, we examined the antiproliferative activity of BBR (1) and its biosynthetically related compounds (2-7) in HL-60 cells. BBR exerted strongest antiproliferative activity among 1-7 and the results of structures and activity relation suggested that a methylenedioxyl group in ring A, an [Formula: see text]-alkyl group at C-9 position, and the frame of isoquinoline may be necessary for antiproliferative activity. Moreover, BBR showed the most potent antiproliferative activity in HL-60 cells among human cancer and normal cell lines tested. Next, we examined the effect of BBR on molecular events known as apoptosis induction. In HL-60 cells, BBR induced chromatin condensation and DNA fragmentation, and triggered the activation of PARP, caspase-3 and caspase-8 without the activation of caspase-9. BBR-induced DNA fragmentation was abolished by pretreatment with inhibitors against caspase-3 and caspase-8, but not against caspase-9. ERK and p38 were promptly phosphorylated after 15 min of BBR treatment, and this was correlated with time of localization to the nucleus of BBR. These results demonstrated that BBR translocated into nucleus immediately after treatments and induced apoptotic cell death by activation of caspase-3 and caspase-8.


Subject(s)
Apoptosis/drug effects , Berberine/metabolism , Berberine/pharmacology , Caspase 3/metabolism , Caspase 8/metabolism , Cell Nucleus/metabolism , Leukemia, Promyelocytic, Acute/pathology , Cell Proliferation/drug effects , Cells, Cultured , Chromatin/metabolism , DNA Fragmentation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , HL-60 Cells , Humans , Leukemia, Promyelocytic, Acute/metabolism , Phosphorylation/drug effects , Structure-Activity Relationship , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...