Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Nucleic Acids ; 22: 50-61, 2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32911344

ABSTRACT

Hypertrophic scars (HSs) and keloids are histologically characterized by excessive extracellular matrix (ECM) deposition. ECM deposition depends on the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteases (TIMPs). TIMP-1 has been linked to ECM degradation and is therefore a promising therapeutic strategy. In this study, we generated super carbonate apatite (sCA) nanoparticle-encapsulated TIMP-1 small interfering RNA (siRNA) (siTIMP1) preparations and examined the effect of local injections on mouse HSs and on ex vivo-cultured keloids. The sCA-siTIMP1 injections significantly reduced scar formation, scar cross-sectional areas, collagen densities, and collagen types I and III levels in the lesions. None of the mice died or exhibited abnormal endpoints. Apatite accumulation was not detected in the other organs. In an ex vivo keloid tissue culture system, sCA-siTIMP1 injections reduced the thickness and complexity of collagen bundles. Our results showed that topical sCA-siTIMP1 injections during mechanical stress-induced HS development reduced scar size. When keloids were injected three times with sCA-siTIMP1 during 6 days, keloidal collagen levels decreased substantially. Accordingly, sCA-siRNA delivery may be an effective approach for keloid treatment, and further investigations are needed to enable its practical use.

2.
Front Cell Dev Biol ; 8: 658, 2020.
Article in English | MEDLINE | ID: mdl-32850798

ABSTRACT

Wound healing is a complex biological process, and imbalances of various substances in the wound environment may prolong healing and lead to excessive scarring. Keloid is abnormal proliferation of scar tissue beyond the original wound margins with excessive deposition of extracellular matrix (ECM) and chronic inflammation. Despite numerous previous research efforts, the pathogenesis of keloid remains unknown. Vascular endothelial cells (VECs) are a major type of inductive cell in inflammation and fibrosis. Despite several studies on vascular morphology in keloid formation, there has been no functional analysis of the role of VECs. In the present study, we isolated living VECs from keloid tissues and investigated gene expression patterns using microarray analysis. We obtained 5 keloid tissue samples and 6 normal skin samples from patients without keloid. Immediately after excision, tissue samples were gently minced and living cells were isolated. Magnetic-activated cell sorting of VECs was performed by negative selection of fibroblasts and CD45+ cells and by positive selection of CD31+cells. After RNA extraction, gene expression analysis was performed to compare VECs isolated from keloid tissue (KVECs) with VECs from normal skin (NVECs). After cell isolation, the percentage of CD31+ cells as measured by flow cytometry ranged from 81.8%-98.6%. Principal component analysis was used to identify distinct molecular phenotypes in KVECs versus NVECs and these were divided into two subgroups. In total, 15 genes were upregulated, and 3 genes were downregulated in KVECs compared with NVECs using the t-test (< 0.05). Quantitative RT-PCR and immunohistochemistry showed 16-fold and 11-fold overexpression of SERPINA3 and LAMC2, respectively. SERPINA3 encodes the serine protease inhibitor, α1-antichymotripsin. Laminin γ2-Chain (LAMC2) is a subunit of laminin-5 that induces retraction of vascular endothelial cells and enhances vascular permeability. This is the first report of VEC isolation and gene expression analysis in keloid tissue. Our data suggest that SERPINA3 and LAMC2 upregulation in KVECs may contribute to the development of fibrosis and prolonged inflammation in keloid. Further functional investigation of these genes will help clarify the mechanisms of abnormal scar tissue proliferation.

3.
J Immunol Res ; 2020: 7057195, 2020.
Article in English | MEDLINE | ID: mdl-32377536

ABSTRACT

AIM: Abnormal scars such as hypertrophic scars (HSs) and keloids are excessively growing scars that exhibit chronic inflammation and capillary vasculogenesis. The lipid mediator sphingosine-1-phosphate (S1P) is important in inflammatory cell recruitment and angiogenesis. Fingolimod (FTY720) is an analog of S1P and thus functionally antagonizes S1P receptors and inhibits the enzyme that produces S1P. We examined the effects of topical FTY720 injections on mechanical force-induced HS progression. METHODS: Mechanical force-induced HSs were generated in C57BL6/J mice by suturing a dorsal incision and applying a stretching device on Days 6, 8, 10, and 12. On Days 8, 10, and 12, intracutaneous FTY720 (10 µM) or control vehicle injections were performed. On Day 14, scar tissues and blood were procured and subjected to histology and flow cytometry. RESULTS: Flow cytometry showed that FTY720 decreased the frequencies of macrophages with M2 predominance in the scars but had no effect on total, CD4+, or CD8a+ T cell frequencies. FTY720 also decreased the vascular endothelial cell frequencies in the scar along with the microvessels, as determined by immunohistochemistry. Compared to the vehicles, FTY720 treatment significantly reduced the gross scar area and the cross-sectional scar area on histology. On the other hand, FTY720 tended to reduce white blood cells and significantly reduced the lymphocyte frequencies in the blood. CONCLUSION: Topical FTY720 induces M2 predominance and impairs angiogenesis. Therefore, its local immunosuppressive mechanisms differ from those of conventional immunosuppressive agents. Topical FTY720 can be a novel therapeutic option for abnormal scars that are difficult to control with corticosteroids. Its lymphocytopenic effects may be limited by careful optimization of the treatment regimen.


Subject(s)
Cicatrix, Hypertrophic/drug therapy , Fingolimod Hydrochloride/therapeutic use , Immunosuppressive Agents/therapeutic use , Macrophages/immunology , Animals , Cell Differentiation , Cytokines/metabolism , Humans , Lysophospholipids/metabolism , Mechanical Phenomena , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic , RAW 264.7 Cells , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Th1-Th2 Balance , Th2 Cells/immunology
4.
Int J Mol Sci ; 20(14)2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31295813

ABSTRACT

Wound healing starts with the recruitment of inflammatory cells that secrete wound-related factors. This step is followed by fibroblast activation and tissue construction. Sphingosine-1-phosphate (S1P) is a lipid mediator that promotes angiogenesis, cell proliferation, and attracts immune cells. We investigated the roles of S1P in skin wound healing by altering the expression of its biogenic enzyme, sphingosine kinase-1 (SphK1). The murine excisional wound splinting model was used. Sphingosine kinase-1 (SphK1) was highly expressed in murine wounds and that SphK1-/- mice exhibit delayed wound closure along with less angiogenesis and inflammatory cell recruitment. Nanoparticle-mediated topical SphK1 overexpression accelerated wound closure, which associated with increased angiogenesis, inflammatory cell recruitment, and various wound-related factors. The SphK1 overexpression also led to less scarring, and the interaction between transforming growth factor (TGF)-ß1 and S1P receptor-2 (S1PR2) signaling is likely to play a key role. In summary, SphK1 play important roles to strengthen immunity, and contributes early wound healing with suppressed scarring. S1P can be a novel therapeutic molecule with anti-scarring effect in surgical, trauma, and chronic wound management.


Subject(s)
Cicatrix/metabolism , Lysophospholipids/metabolism , Neovascularization, Physiologic , Skin/metabolism , Sphingosine/analogs & derivatives , Wound Healing , Animals , Biomarkers , Cell Proliferation , Cicatrix/genetics , Cicatrix/pathology , Disease Models, Animal , Gene Expression , Granuloma/etiology , Granuloma/metabolism , Granuloma/pathology , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Knockout , Neovascularization, Physiologic/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Skin/injuries , Skin/pathology , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Sphingosine-1-Phosphate Receptors/metabolism , Wound Healing/genetics
5.
Bioelectrochemistry ; 126: 163-171, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30563748

ABSTRACT

The endogenous electric field (EF) of skin wounds plays an important role in the biological processes that underlie wound healing. Treatments that modulate wound-EFs promote healing. However, the mechanism(s) that underlie this effect remain unclear. Agilent-based microarrays were used to determine the transcriptomes of the keratinocyte line HaCaT, normal human dermal fibroblasts, and the human dermal endothelial cell line HMEC-1 before and after high-voltage alternating current (AC)-EF (14,000 V, 90 Hz) treatment. The keratinocytes had the most genes whose transcription was altered by EF. They included the cytochrome P450 (CYP) genes CYP1A1 and CYP1B1, HMOX1, EREG, DUSP5, and SLC7A11 (all upregulated), and DOCK8, ABCC6, and CYP26A1 (all downregulated). As shown by transcriptional-network analysis, all three CYP genes played central roles in the EF-induced changes in keratinocyte transcriptome. To the best of our knowledge, this is the first study that demonstrates that CYP genes play a key role in the transcriptional responses of human keratinocytes to EF treatment. Further investigations into the effects of EF on wound healing, aging, and regenerative medicine are likely to yield promising results.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Keratinocytes/metabolism , Transcriptional Activation , Cell Line , Electric Stimulation/instrumentation , Electric Stimulation Therapy/instrumentation , Electricity , Equipment Design , Gene Regulatory Networks , Humans , Keratinocytes/cytology , Skin/cytology , Skin/metabolism , Wound Healing
6.
Inorg Chem ; 52(18): 10431-7, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-24004030

ABSTRACT

Redox properties of a mononuclear copper(II) superoxide complex, (L)Cu(II)-OO(•), supported by a tridentate ligand (L = 1-(2-phenethyl)-5-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane) have been examined as a model compound of the putative reactive intermediate of peptidylglycine α-hydroxylating monooxygenase (PHM) and dopamine ß-monooxygenase (DßM) (Kunishita et al. J. Am. Chem. Soc. 2009, 131, 2788-2789; Inorg. Chem. 2012, 51, 9465-9480). On the basis of the reactivity toward a series of one-electron reductants, the reduction potential of (L)Cu(II)-OO(•) was estimated to be 0.19 ± 0.07 V vs SCE in acetone at 298 K (cf. Tahsini et al. Chem.-Eur. J. 2012, 18, 1084-1093). In the reaction of TEMPO-H (2,2,6,6-tetramethylpiperidine-N-hydroxide), a simple HAT (hydrogen atom transfer) reaction took place to give the corresponding hydroperoxide complex LCu(II)-OOH, whereas the reaction with phenol derivatives ((X)ArOH) gave the corresponding phenolate adducts, LCu(II)-O(X)Ar, presumably via an acid-base reaction between the superoxide ligand and the phenols. The reaction of (L)Cu(II)-OO(•) with a series of triphenylphosphine derivatives gave the corresponding triphenylphosphine oxides via an electrophilic ionic substitution mechanism with a Hammett ρ value as -4.3, whereas the reaction with thioanisole (sulfide) only gave a copper(I) complex. These reactivities of (L)Cu(II)-OO(•) are different from those of a similar end-on superoxide copper(II) complex supported by a tetradentate TMG3tren ligand (1,1,1-Tris{2-[N(2)-(1,1,3,3-tetramethylguanidino)]ethyl}amine (Maiti et al. Angew. Chem., Int. Ed. 2008, 47, 82-85).


Subject(s)
Copper/chemistry , Organometallic Compounds/chemistry , Superoxides/chemistry , Molecular Structure , Organometallic Compounds/chemical synthesis , Oxidation-Reduction
7.
Inorg Chem ; 51(17): 9465-80, 2012 Sep 03.
Article in English | MEDLINE | ID: mdl-22908844

ABSTRACT

A mononuclear copper(II) superoxo species has been invoked as the key reactive intermediate in aliphatic substrate hydroxylation by copper monooxygenases such as peptidylglycine α-hydroxylating monooxygenase (PHM), dopamine ß-monooxygenase (DßM), and tyramine ß-monooxygenase (TßM). We have recently developed a mononuclear copper(II) end-on superoxo complex using a N-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane tridentate ligand, the structure of which is similar to the four-coordinate distorted tetrahedral geometry of the copper-dioxygen adduct found in the oxy-form of PHM (Prigge, S. T.; Eipper, B. A.; Mains, R. E.; Amzel, L. M. Science2004, 304, 864-867). In this study, structures and physicochemical properties as well as reactivity of the copper(I) and copper(II) complexes supported by a series of tridentate ligands having the same N-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane framework have been examined in detail to shed light on the chemistry dictated in the active sites of mononuclear copper monooxygenases. The ligand exhibits unique feature to stabilize the copper(I) complexes in a T-shape geometry and the copper(II) complexes in a distorted tetrahedral geometry. Low temperature oxygenation of the copper(I) complexes generated the mononuclear copper(II) end-on superoxo complexes, the structure and spin state of which have been further characterized by density functional theory (DFT) calculations. Detailed kinetic analysis on the O(2)-adduct formation reaction gave the kinetic and thermodynamic parameters providing mechanistic insights into the association and dissociation processes of O(2) to the copper complexes. The copper(II) end-on superoxo complex thus generated gradually decomposed to induce aliphatic ligand hydroxylation. Kinetic and DFT studies on the decomposition reaction have suggested that C-H bond abstraction occurs unimolecularly from the superoxo complex with subsequent rebound of the copper hydroperoxo species to generate the oxygenated product. The present results have indicated that a superoxo species having a four-coordinate distorted tetrahedral geometry could be reactive enough to induce the direct C-H bond activation of aliphatic substrates in the enzymatic systems.


Subject(s)
Catalytic Domain , Copper/chemistry , Dopamine beta-Hydroxylase/chemistry , Mixed Function Oxygenases/chemistry , Multienzyme Complexes/chemistry , Chemical Phenomena , Hydroxylation , Models, Molecular , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Oxidation-Reduction , Oxygen/chemistry
8.
Opt Lett ; 32(12): 1656-8, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17572737

ABSTRACT

Time-resolved spectrometry was conducted in the mid-infrared region (2.8-4.6 microm). A galvano-mirror causes a spectrally dispersed beam to repeatedly sweep up and down a PtSi focal plane array so that each element of the array is struck by the beam only once at some point within a time frame. Transient spectra of flowing gases (hydrocarbon and carbon dioxide) were measured at 80 micros intervals.

SELECTION OF CITATIONS
SEARCH DETAIL
...