Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Res ; 120: 72-87, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37948786

ABSTRACT

Fructooligosaccharide (FOS) is fermented by intestinal microbes to generate intestinal microbe-derived hydrogen gas (IMDH). Oxidative stress increases during gestation, whereas hydrogen gas has antioxidant effects with therapeutic benefits. We have previously reported that the offspring from a pregnant, excessive folic acid mouse model (PEFAM) had abnormal glucose metabolism after growth. We hypothesized that IMDH by FOS feeding during gestation in PEFAM would suppress maternal and fetal oxidative stress. C57BL/6J mice on day 1 of gestation were divided into 3 groups and dissected at gestational day 18. The control (CONT) diet was AIN-93G containing folic acid 2 mg/kg diet; PEFAM was fed with an excessive folic acid (EFA) diet containing folic acid 40 mg/kg diet, and the EFA-FOS diet was replaced half of the sucrose in the EFA diet. Hydrogen gas concentrations in maternal livers and whole fetuses in EFA-FOS were significantly higher than those in CONT and EFA, respectively (P < .05). Maternal and fetal 8-hydroxy-2'-deoxyguanosine in EFA-FOS were not significantly different from those in the CONT group, whereas those in the EFA group were significantly increased compared with CONT and EFA-FOS (P < .05). In EFA-FOS, expression of protein and mRNA of superoxide dismutase and heme oxygenase 1 in mothers and superoxide dismutase in fetuses were not significantly different from those in CONT, whereas those in EFA were significantly increased (P < .05). The protein expression of Nrf2 in mothers and fetuses were not significantly different between EFA-FOS and CONT. Therefore, FOS feeding to PEFAM during gestation decreases maternal and fetal oxidative stress through IMDH.


Subject(s)
Folic Acid , Oligosaccharides , Oxidative Stress , Animals , Female , Mice , Pregnancy , Folic Acid/pharmacology , Mice, Inbred C57BL , Superoxide Dismutase
2.
Food Sci Nutr ; 8(7): 3610-3616, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32724623

ABSTRACT

Maltobionic acid (MA), formed by a gluconic acid and glucose linked by an α-1,4 bond, may have the properties of a nondigestible oligosaccharide. The objective of this study was to elucidate the bioavailability of MA in rats and humans by observing digestion of MA by small intestinal enzymes, the fermentation of MA by gut microbiota, and the effect of adaptation following prolonged ingestion of MA. MA digestion was assessed using brush border membrane vesicles (BBMV) from rat small intestine. A within-subject repeated measures design was used for ingestion experiments in 10 healthy female participants. After MA ingestion, postprandial plasma glucose and insulin levels, breath hydrogen excretion, and urinary MA were measured. The effect of adaptation following prolonged MA ingestion was investigated in rats. MA was minimally hydrolyzed by BBMV. Ingestion of 10 g of MA by healthy females did not elevate postprandial plasma glucose and insulin levels. Breath hydrogen and urinary MA were negligibly excreted over 8 hr following ingestion. Adaptation to prolonged MA ingestion produced no significant difference in exhaled hydrogen levels over 8 hr following administration compared with controls. MA is a new food material that is highly resistant to digestion and fermentation. It expresses the characteristics of a nondigestible oligosaccharide, including being low energy, improving the flavor of food and juice, and mineral solubilization.

SELECTION OF CITATIONS
SEARCH DETAIL
...