Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 224-225: 49-55, 2018.
Article in English | MEDLINE | ID: mdl-29597067

ABSTRACT

Asparagus (Asparagus officinalis L.) is a widely cultivated perennial veritable and can be harvested more than ten years. However, the crop quality and yield decline after a few year's cultivation, which is called "asparagus decline". Even though those asparagus plants were replaced with new young asparagus plants, the productivity and quality of the crop remain relatively low, which is known as a "asparagus replant problem". One of the possible reasons for "asparagus decline" and "asparagus replant problem" is thought to be autotoxicity of asparagus. However, the compounds involved in the autotoxicity is not clear. The objective of this study was therefore to determine the potential role of autotoxicity in the "asparagus decline" and "asparagus replant problem". An aqueous methanol extract of 10-year-asparagus-cultivated soils inhibited the growth of asparagus seedlings and other two test plants with concentration dependent manner. The result confirmed that the asparagus soils have autotoxic activity. The extract was then purified by several chromatographies with monitoring the inhibitory activity and a potent growth inhibitory substance causing the autotoxic effect was isolated. The chemical structures of the compound was determined by spectral data to be trans-cinnamic acid. trans-Cinnamic acid inhibited the growth of asparagus seedlings at concentrations greater than 10 µM. The concentrations required for 50% growth inhibition of asparagus (IC50) were 24.1-41.6 µM. trans-Cinnamic acid accumulated 174 µM in the 10-year-asparagus-cultivated soils, which may be enough levels to cause the growth inhibition on asparagus considering its IC50 value. Therefore, trans-cinnamic acid may contribute to the autotoxic effect of asparagus soils, and may be in part responsible for "asparagus decline" and "asparagus replant problem".


Subject(s)
Asparagus Plant/growth & development , Cinnamates/adverse effects , Soil/chemistry , Asparagus Plant/drug effects , Plant Extracts/adverse effects , Seedlings/drug effects , Seedlings/growth & development , Stereoisomerism
2.
J Plant Physiol ; 213: 23-29, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28314158

ABSTRACT

Asparagus (Asparagus officinalis L.) is a perennial vegetable, but its crop productivity and quality decrease gradually. One possible reason for "asparagus decline" is thought to be the autotoxicity of asparagus. However, the autotoxic property of asparagus rhizomes remains unknown. The objective of this study was to determine the potential role of rhizomes in the autotoxicity of asparagus. An aqueous methanol extract of asparagus rhizomes inhibited the growth of asparagus seedlings and six other test plants in a concentration-dependent manners: garden cress (Lepidum sativum L.), lettuce (Lactuca sativa L.), alfalfa (Medicago sativa L.), ryegrass (Lolium multiflorum Lam.), timothy (Phleum pratense L.) and barnyardgrass (Echinochloa crus-galli (L.) Beauv.). These results suggest that asparagus rhizomes contain autotoxic compounds. The extract was purified through several chromatographic steps with monitoring the autotoxic activity, and p-coumaric acid and iso-agatharesinol were isolated. These compounds inhibited the shoot and root growth of asparagus and two other test plants, garden cress and ryegrass, at concentrations higher than 0.1mM. The concentrations required for 50% inhibition of the root and shoot growth of these test plants ranged from 0.36 to 0.85mM and 0.41-1.22mM for p-coumaric acid and iso-agatharesinol, respectively. Therefore, these compounds may contribute to the autotoxicity caused by asparagus rhizomes and may be involved in "asparagus decline".


Subject(s)
Asparagus Plant/drug effects , Rhizome/chemistry , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Echinochloa/drug effects , Lepidium sativum/drug effects , Lactuca/drug effects , Lignans/chemistry , Lignans/pharmacology , Lolium/drug effects , Methanol/chemistry , Plant Roots/drug effects , Plant Shoots/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...