Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38990080

ABSTRACT

We developed a near-infrared focused heating system (IRrDAC) for deformation experiments using a rotational diamond anvil cell. This study reports the results of annealing tests on silver and antigorite conducted at SPring-8 (BL47XU) using the IRrDAC system. The experimental results demonstrated the melting of silver and the dehydration of antigorite, confirming the capability of this system. The reproducible relationships between temperature and input power were also confirmed. The IRrDAC system enables deformation experiments at pressures equivalent to those of the lower mantle under homogeneous and stable temperatures and is expected to contribute to the understanding of deep Earth rheology.

2.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-38081254

ABSTRACT

The externally heated diamond anvil cell (EHDAC) conducts high pressure and temperature experiments with spatial uniformity and temporal stability. These are conventionally combined with various spectroscopies and x-ray diffraction measurements. EHDAC techniques perform Joule heating on a heater placed close to or directly in contact with diamond anvils. However, the electrical wiring and heater required for Joule heating complicate EHDAC setups, hindering easy access for the measurement of physical properties. This study proposes an EHDAC technique using laser- instead of Joule-heating. We successfully achieved temperatures reaching 900 K by applying heat to diamond anvils through laser-heating of the gaskets with thermally insulating anvil seats. To test this setup, we measured the melting temperature of H2O ice VII, which was consistent with previous studies. We also measured the high-pressure and temperature impedance of H2O VII and verified the capability of electrical resistivity measurements in this setup. This technique allows various physical property measurements owing to its simple setup required for externally laser-heated diamond anvil cell experiments. The unique characteristics of this heating technique are that (1) no heaters or wiring are required, (2) it exhibits the most efficient heating among EHDAC studies, (3) it maintains the DAC body at room temperature, and (4) diamond anvils do not detach from anvil seats after the EHDAC experiment. This method significantly simplifies the experimental setup, which allows much easier access to various physical property measurements using an EHDAC.

3.
Phys Rev Lett ; 130(26): 266301, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37450814

ABSTRACT

We determined the electrical resistivity of liquid Fe to 135 GPa and 6680 K using a four-probe method in a diamond-anvil cell combined with two novel techniques: (i) enclosing a molten Fe in a sapphire capsule, and (ii) millisecond time-resolved simultaneous measurements of the resistance, x-ray diffraction, and temperature of instantaneously melted Fe. Our results show the minimal temperature dependence of the resistivity of liquid Fe and its anomalous resistivity decrease around 50 GPa, likely associated with a gradual magnetic transition, both in agreement with previous ab initio calculations.


Subject(s)
Diamond , Electricity , Iron , Temperature , X-Ray Diffraction
4.
Rev Sci Instrum ; 93(10): 105103, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36319335

ABSTRACT

The electrical conductivity (EC) of minerals found on Earth and throughout the solar system is a fundamental transport property that is used to understand various dynamical phenomena in planetary interiors. High-pressure and high-temperature (P-T) EC measurements are also an important tool for observing phase transitions. Impedance measurements can accurately measure the EC of a nonmetallic sample. In previous measurements under static conditions using a laser-heated diamond-anvil cell (LHDAC), only direct current resistance is measured, but this method overestimates the bulk sample resistance. Moreover, the previous methodology could only be applied to nontransparent samples in an LHDAC using infrared lasers, limiting the range of measurable composition. To the best of our knowledge, no in situ high-P-T EC measurements of transparent materials have been reported using LHDAC techniques. We developed a novel impedance measurement technique under high-P-T conditions in an LHDAC that applies to transparent samples. As a validation, we measured the EC of Mg0.9Fe0.1SiO3 bridgmanite up to 51 GPa and 2000 K and found that the results are consistent with those of previous studies. We also measured the EC values of sodium chloride to compare with those of previous studies, as well as those of cubic boron nitride and zirconia cement to quantify how well they insulate under high P-T conditions. This is the first report of the impedance and EC measurements of transparent minerals in an LHDAC, which allows the measurement of Fe-poor/-free materials, including the major constituents of the interiors of gas giants and icy planets, under extreme conditions.

5.
Sci Rep ; 12(1): 10000, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35705617

ABSTRACT

Hydrogen could be an important light element in planetary cores, but its effect on phase diagrams of iron alloys is not well known because the solubility of H in Fe is minimal at ambient pressure and high-pressure experiments on H-bearing systems have been challenging. Considering that silicon can be another major light element in planetary cores, here we performed melting experiments on the Fe-Si-H system at ~ 50 GPa and obtained the ternary liquidus phase relations and the solid/liquid partition coefficient, D of Si and H based on in-situ high-pressure X-ray diffraction measurements and ex-situ chemical and textural characterizations on recovered samples. Liquid crystallized hexagonal close-packed (hcp) (Fe0.93Si0.07)H0.25, which explains the observed density and velocities of the Earth's solid inner core. The relatively high DSi = 0.94(4) and DH = 0.70(12) suggest that in addition to Si and H, the liquid outer core includes other light elements such as O, which is least partitioned into solid Fe and can thus explain the density difference between the outer and inner core. H and O, as well as Si, are likely to be major core light elements, supporting the sequestration of a large amount of water in the Earth's core.

6.
Sci Rep ; 11(1): 19471, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34593901

ABSTRACT

The crystallization of the magma ocean resulted in the present layered structure of the Earth's mantle. An open question is the electronic spin state of iron in bridgmanite (the most abundant mineral on Earth) crystallized from a deep magma ocean, which has been neglected in the crystallization history of the entire magma ocean. Here, we performed energy-domain synchrotron Mössbauer spectroscopy measurements on two bridgmanite samples synthesized at different pressures using the same starting material (Mg0.78Fe0.13Al0.11Si0.94O3). The obtained Mössbauer spectra showed no evidence of low-spin ferric iron (Fe3+) from the bridgmanite sample synthesized at relatively low pressure of 25 gigapascals, while that directly synthesized at a higher pressure of 80 gigapascals contained a relatively large amount. This difference ought to derive from the large kinetic barrier of Fe3+ rearranging from pseudo-dodecahedral to octahedral sites with the high-spin to low-spin transition in experiments. Our results indicate a certain amount of low-spin Fe3+ in the lower mantle bridgmanite crystallized from an ancient magma ocean. We therefore conclude that primordial bridgmanite with low-spin Fe3+ dominated the deeper part of an ancient lower mantle, which would contribute to lower mantle heterogeneity preservation and call for modification of the terrestrial mantle thermal evolution scenarios.

7.
Rev Sci Instrum ; 92(1): 015119, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33514222

ABSTRACT

Semiconductor-based heaters for diamond anvil cells (DACs) have advantages over metal wire heaters in terms of repeated use and the ability to reach higher temperatures. We introduce a cylindrical SiC heater for an externally heated DAC (EHDAC) that works satisfactorily at temperatures up to 1500 K and pressures around 90 GPa. The heater is reusable and inexpensive, and only slight modifications to the DAC are required to fit the heater. Experiments on melting of NaCl and gold are conducted at ambient pressure to test the temperature accuracy of the EHDAC system, and resistance measurements on iodine at high pressures and temperatures are performed to assess the heater assembly. These test runs show that a uniform and accurate temperature can be maintained by the EHDAC assembly, which has potential applications to a variety of transport property measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...