Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Protein Sci ; 33(7): e5025, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38864689

ABSTRACT

Polyhydroxyalkanoates are a class of biodegradable, thermoplastic polymers which represent a major carbon source for various bacteria. Proteins which mediate the translocation of polyhydroxyalkanoate breakdown products, such as ß-hydroxybutyrate (BHB)-a ketone body which in humans serves as an important biomarker, have not been well characterized. In our investigation to screen a solute-binding protein (SBP) which can act as a suitable recognition element for BHB, we uncovered insights at the intersection of bacterial metabolism and diagnostics. Herein, we identify SBPs associated with putative ATP-binding cassette transporters that specifically recognize BHB, with the potential to serve as recognition elements for continuous quantification of this analyte. Through bioinformatic analysis, we identified candidate SBPs from known metabolizers of polyhydroxybutyrate-including proteins from Cupriavidus necator, Ensifer meliloti, Paucimonas lemoignei, and Thermus thermophilus. After recombinant expression in Escherichia coli, we demonstrated with intrinsic tryptophan fluorescence spectroscopy that four candidate proteins interacted with BHB, ranging from nanomolar to micromolar affinity. Tt.2, an intrinsically thermostable protein from Thermus thermophilus, was observed to have the tightest binding and specificity for BHB, which was confirmed by isothermal calorimetry. Structural analyses facilitated by AlphaFold2, along with molecular docking and dynamics simulations, were used to hypothesize key residues in the binding pocket and to model the conformational dynamics of substrate unbinding. Overall, this study provides strong evidence identifying the cognate ligands of SBPs which we hypothesize to be involved in prokaryotic cellular translocation of polyhydroxyalkanoate breakdown products, while highlighting these proteins' promising biotechnological application.


Subject(s)
3-Hydroxybutyric Acid , 3-Hydroxybutyric Acid/metabolism , 3-Hydroxybutyric Acid/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Periplasmic Binding Proteins/metabolism , Periplasmic Binding Proteins/chemistry , Periplasmic Binding Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Ketone Bodies/metabolism , Ketone Bodies/chemistry
2.
Biosens Bioelectron ; 255: 116219, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38552525

ABSTRACT

We introduce a versatile method to convert NAD+ or NADP+ -dependent dehydrogenases into quasi-direct electron transfer (quasi-DET)-type dehydrogenases, by modifying with a mediator on the enzyme surface toward the development of 2.5th generation enzymatic sensors. In this study, we use ß-hydroxybutyrate (BHB) dehydrogenase (BHBDh) from Alcaligenes faecalis (AfBHBDh) as a representative NAD+ or NADP+ -dependent dehydrogenase. BHBDhs are important in ketone monitoring, especially for the diagnosis of diabetic ketoacidosis. We modified AfBHBDh with a thiol-reactive phenazine ethosulfate (trPES). We designed, constructed, and modified mutant BHBDhs harboring cysteine residues within 20 Å from the C4 nicotinamide in NAD+/NADH. Mutants Ser65Cys, Thr96Cys, and Lys106Cys showed indistinguishable catalytic activities from the wild-type enzyme, even after trPES modification. These trPES-modified mutants were immobilized on gold disk electrodes via amine coupling with succinimide-groups of dithiobis (succinimidyl hexanoate) self-assembled monolayers for electrochemical measurements. Considering there is a wide range of BHB concentrations, we exploited the linear regression in log scales. The linear range for the sensors with trPES-modified BHBDh mutants Ser65Cys, Thr96Cys, and Lys106Cys were 0.1-4.0 mM in both buffer solution and artificial interstitial fluid (ISF). They have limits of detection of 0.047 mM for Ser65Cys, 0.15 mM for Thr96Cys, and 0.060 mM for Lys106Cys in buffer solution, and 0.12 mM, 0.089 mM, and 0.044 mM in artificial ISF, respectively. These results indicate that redox mediator modification of NAD(P)-dependent dehydrogenases converts them into quasi-DET-type dehydrogenases, thereby enabling their utilization in 2.5th generation enzymatic sensors, which will facilitate the construction of enzymatic sensors suitable for continuous monitoring systems.


Subject(s)
Biosensing Techniques , Glucose , NAD , Electrons , NADP , Biosensing Techniques/methods , Oxidoreductases
3.
Annu Rev Biomed Eng ; 26(1): 357-382, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38424090

ABSTRACT

Among the various types of enzyme-based biosensors, sensors utilizing enzymes capable of direct electron transfer (DET) are recognized as the most ideal. However, only a limited number of redox enzymes are capable of DET with electrodes, that is, dehydrogenases harboring a subunit or domain that functions specifically to accept electrons from the redox cofactor of the catalytic site and transfer the electrons to the external electron acceptor. Such subunits or domains act as built-in mediators for electron transfer between enzymes and electrodes; consequently, such enzymes enable direct electron transfer to electrodes and are designated as DET-type enzymes. DET-type enzymes fall into several categories, including redox cofactors of catalytic reactions, built-in mediators for DET with electrodes and by their protein hierarchic structures, DET-type oxidoreductases with oligomeric structures harboring electron transfer subunits, and monomeric DET-type oxidoreductases harboring electron transfer domains. In this review, we cover the science of DET-type oxidoreductases and their biomedical applications. First, we introduce the structural biology and current understanding of DET-type enzyme reactions. Next, we describe recent technological developments based on DET-type enzymes for biomedical applications, such as biosensors and biochemical energy harvesting for self-powered medical devices. Finally, after discussing how to further engineer and create DET-type enzymes, we address the future prospects for DET-type enzymes in biomedical engineering.


Subject(s)
Biosensing Techniques , Oxidation-Reduction , Oxidoreductases , Electron Transport , Biosensing Techniques/methods , Humans , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Electrodes , Electrons , Animals , Catalytic Domain , Biomedical Engineering/methods
4.
Int J Mol Sci ; 24(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36768169

ABSTRACT

The electrochemical enzyme sensors based on direct electron transfer (DET)-type oxidoreductase-based enzymes are ideal for continuous and in vivo monitoring. However, the number and types of DET-type oxidoreductases are limited. The aim of this research is the development of a versatile method to create a DET-type oxidoreductase complex based on the SpyCatcher/SpyTag technique by preparing SpyCatcher-fused heme c and SpyTag-fused non-DET-type oxidoreductases, and by the in vitro formation of DET-type oxidoreductase complexes. A heme c containing an electron transfer protein derived from Rhizobium radiobacter (CYTc) was selected to prepare SpyCatcher-fused heme c. Three non-DET-type oxidoreductases were selected as candidates for the SpyTag-fused enzyme: fungi-derived flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (GDH), an engineered FAD-dependent d-amino acid oxidase (DAAOx), and an engineered FMN-dependent l-lactate oxidase (LOx). CYTc-SpyCatcher (CYTc-SC) and SpyTag-Enzymes (ST-GDH, ST-DAAOx, ST-LOx) were prepared as soluble molecules while maintaining their redox properties and catalytic activities, respectively. CYTc-SC/ST-Enzyme complexes were formed by mixing CYTc-SpyCatcher and SpyTag-Enzymes, and the complexes retained their original enzymatic activity. Remarkably, the heme domain served as an electron acceptor from complexed enzymes by intramolecular electron transfer; consequently, all constructed CYTc-SC/ST-Enzyme complexes showed DET ability to the electrode, demonstrating the versatility of this method.


Subject(s)
Electrons , Flavin-Adenine Dinucleotide , Flavin-Adenine Dinucleotide/metabolism , Glucose 1-Dehydrogenase/metabolism , Proteins/metabolism , Oxidation-Reduction
5.
Commun Biol ; 5(1): 1334, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36473944

ABSTRACT

The heterotrimeric flavin adenine dinucleotide dependent glucose dehydrogenase is a promising enzyme for direct electron transfer (DET) principle-based glucose sensors within continuous glucose monitoring systems. We elucidate the structure of the subunit interface of this enzyme by preparing heterotrimer complex protein crystals grown under a space microgravity environment. Based on the proposed structure, we introduce inter-subunit disulfide bonds between the small and electron transfer subunits (5 pairs), as well as the catalytic and the electron transfer subunits (9 pairs). Without compromising the enzyme's catalytic efficiency, a mutant enzyme harboring Pro205Cys in the catalytic subunit, Asp383Cys and Tyr349Cys in the electron transfer subunit, and Lys155Cys in the small subunit, is determined to be the most stable of the variants. The developed engineered enzyme demonstrate a higher catalytic activity and DET ability than the wild type. This mutant retains its full activity below 70 °C as well as after incubation at 75 °C for 15 min - much higher temperatures than the current gold standard enzyme, glucose oxidase, is capable of withstanding.


Subject(s)
Blood Glucose Self-Monitoring , Glucose 1-Dehydrogenase , Electrons , Blood Glucose
6.
Molecules ; 26(3)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572552

ABSTRACT

Glycated albumin (GA) is an important glycemic control marker for diabetes mellitus. This study aimed to develop a highly sensitive disposable enzyme sensor strip for GA measurement by using an interdigitated electrode (IDE) as an electrode platform. The superior characteristics of IDE were demonstrated using one microelectrode of the IDE pair as the working electrode (WE) and the other as the counter electrode, and by measuring ferrocyanide/ferricyanide redox couple. The oxidation current was immediately reached at the steady state when the oxidation potential was applied to the WE. Then, an IDE enzyme sensor strip for GA measurement was prepared. The measurement of fructosyl lysine, the protease digestion product of GA, exhibited a high, steady current immediately after potential application, revealing the highly reproducible measurement. The sensitivity (2.8 nA µM-1) and the limit of detection (1.2 µM) obtained with IDE enzyme sensor strip were superior compared with our previously reported sensor using screen printed electrode. Two GA samples, 15 or 30% GA, corresponding to healthy and diabetic levels, respectively, were measured after protease digestion with high resolution. This study demonstrated that the application of an IDE will realize the development of highly sensitive disposable-type amperometric enzyme sensors with high reproducibility.


Subject(s)
Biosensing Techniques/instrumentation , Disposable Equipment , Enzymes/metabolism , Serum Albumin/analysis , Electrodes , Glycation End Products, Advanced , Reproducibility of Results , Glycated Serum Albumin
7.
Biosens Bioelectron ; 176: 112911, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33421758

ABSTRACT

A fusion enzyme composed of an Aspergillus flavus-derived flavin adenine dinucleotide glucose dehydrogenase (AfGDH) and an electron transfer domain of Phanerochaete chrysosporium-derived cellobiose dehydrogenase (Pcyb) was previously reported to show the direct electron transfer (DET) ability to an electrode. However, its slow intramolecular electron transfer (IET) rate from the FAD to the heme, limited the sensor signals. In this study, fusion FADGDH (Pcyb-AfGDH) enzymes were strategically redesigned by performing docking simulation, following surface-electrostatic potential estimation in the predicted area. Based on these predictions, we selected the amino acid substitution on Glu324, or on Asn408 to Lys to increase the positive charge at the rim of the interdomain region. Pcyb-AfGDH mutants were recombinantly produced using Pichia pastoris as the host microorganism, and their IET was evaluated. Spectroscopic observations showed that the Glu324Lys (E324K) and Asn408Lys (N408K) Pcyb-AfGDH mutants showed approximately 1.70- and 9.0-fold faster IET than that of wildtype Pcyb-AfGDH, respectively. Electrochemical evaluation revealed that the mutant Pcyb-AfGDH-immobilized electrodes showed higher DET current values than that of the wildtype Pcyb-AfGDH-immobilized electrodes at pH 6.5, which was approximately 9-fold higher in the E324K mutant and 15-fold higher in the N408K mutant, than in the wildtype. Glucose enzyme sensors employing N408K mutant was able to measure glucose concentration under physiological condition using artificial interstitial fluid at pH 7.4, whereas the one with wildtype Pcyb-AfGDH was not. These results indicated that the sensor employed the redesigned mutant Pcyb-AfGDH can be used for future continuous glucose monitoring system based on direct electron transfer principle. (247 words).


Subject(s)
Biosensing Techniques , Glucose 1-Dehydrogenase , Blood Glucose , Blood Glucose Self-Monitoring , Electron Transport , Electrons , Flavin-Adenine Dinucleotide/metabolism , Glucose , Glucose 1-Dehydrogenase/metabolism , Heme , Saccharomycetales
8.
Biochem Biophys Res Commun ; 530(1): 82-86, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32828319

ABSTRACT

Fungi-derived flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenases (FADGDHs) are the most popular and advanced enzymes for SMBG sensors because of their high substrate specificity toward glucose and oxygen insensitivity. However, this type of FADGDH hardly shows direct electron transfer (DET) ability. In this study, we developed a new DET-type FADGDH by harboring Cytochrome b562 (cyt b562) derived from Escherichia coli as the electron transfer domain. The structural genes encoding fusion enzymes composed of cyt b562 at either the N- or C-terminus of fungal FADGDH, (cyt b562-GDH or GDH-cyt b562), were constructed, recombinantly expressed, and characteristics of the fusion proteins were investigated. Both constructed fusion enzymes were successfully expressed in E. coli, as the soluble and GDH active proteins, showing cyt b562 specific redox properties. Thusconstructed fusion proteins showed internal electron transfer between FAD in FADGDH and fused cyt b562. Consequently, both cyt b562-GDH and GDH-cyt b562 showed DET abilities toward electrode. Interestingly, cyt b562-GDH showed much rapid internal electron transfer and higher DET ability than GDH-cyt b562. Thus, we demonstrated the construction and production of a new DET-type FADGDH using E.coli as the host cells, which is advantageous for future industrial application and further engineering.


Subject(s)
Botrytis/genetics , Cytochrome b Group/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Glucose 1-Dehydrogenase/genetics , Botrytis/metabolism , Cytochrome b Group/metabolism , Electron Transport , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Flavin-Adenine Dinucleotide/metabolism , Glucose 1-Dehydrogenase/metabolism , Protein Engineering , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Substrate Specificity
9.
Int J Mol Sci ; 21(3)2020 Feb 08.
Article in English | MEDLINE | ID: mdl-32046321

ABSTRACT

Glucose oxidase (GOx) has been widely utilized for monitoring glycemic levels due to its availability, high activity, and specificity toward glucose. Among the three generations of electrochemical glucose sensor principles, direct electron transfer (DET)-based third-generation sensors are considered the ideal principle since the measurements can be carried out in the absence of a free redox mediator in the solution without the impact of oxygen and at a low enough potential for amperometric measurement to avoid the effect of electrochemically active interferences. However, natural GOx is not capable of DET. Therefore, a simple and rapid strategy to create DET-capable GOx is desired. In this study, we designed engineered GOx, which was made readily available for single-step modification with a redox mediator (phenazine ethosulfate, PES) on its surface via a lysine residue rationally introduced into the enzyme. Thus, PES-modified engineered GOx showed a quasi-DET response upon the addition of glucose. This strategy and the obtained results will contribute to the further development of quasi-DET GOx-based glucose monitoring dedicated to precise and accurate glycemic control for diabetic patient care.


Subject(s)
Biosensing Techniques/methods , Blood Glucose/analysis , Glucose Oxidase/metabolism , Phenazines/metabolism , Protein Engineering , Aspergillus niger/enzymology , Electrochemical Techniques , Fungal Proteins/metabolism , Glucose/metabolism , Glucose Oxidase/genetics
10.
Bioelectrochemistry ; 132: 107414, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31838457

ABSTRACT

The history of the development of glucose sensors goes hand-in-hand with the history of the discovery and the engineering of glucose-sensing enzymes. Glucose oxidase (GOx) has been used for glucose sensing since the development of the first electrochemical glucose sensor. The principle utilizing oxygen as the electron acceptor is designated as the first-generation electrochemical enzyme sensors. With increasing demand for hand-held and cost-effective devices for the "self-monitoring of blood glucose (SMBG)", second-generation electrochemical sensor strips employing electron mediators have become the most popular platform. To overcome the inherent drawback of GOx, namely, the use of oxygen as the electron acceptor, various glucose dehydrogenases (GDHs) have been utilized in second-generation principle-based sensors. Among the various enzymes employed in glucose sensors, GDHs harboring FAD as the redox cofactor, FADGDHs, especially those derived from fungi, fFADGDHs, are currently the most popular enzymes in the sensor strips of second-generation SMBG sensors. In addition, the third-generation principle, employing direct electron transfer (DET), is considered the most elegant approach and is ideal for use in electrochemical enzyme sensors. However, glucose oxidoreductases capable of DET are limited. One of the most prominent GDHs capable of DET is a bacteria-derived FADGDH complex (bFADGDH). bFADGDH has three distinct subunits; the FAD harboring the catalytic subunit, the small subunit, and the electron-transfer subunit, which makes bFADGDH capable of DET. In this review, we focused on the two representative glucose sensing enzymes, fFADGDHs and bFADGDHs, by presenting their discovery, sources, and protein and enzyme properties, and the current engineering strategies to improve their potential in sensor applications.


Subject(s)
Flavin-Adenine Dinucleotide/metabolism , Glucose 1-Dehydrogenase/metabolism , Glucose/metabolism , Protein Engineering , Electrons , Fungi/enzymology
11.
Biosens Bioelectron ; 129: 189-197, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30721794

ABSTRACT

Faradaic electrochemical impedance spectroscopy (faradaic EIS) is an attractive measurement principle for biosensors. However, there have been no reports on sensors employing direct electron transfer (DET)-type redox enzymes based on faradaic EIS principle. In this study, we have attempted to construct the 3rd-generation faradaic enzyme EIS sensor, which used DET-type flavin adenine dinucleotide (FAD) dependent glucose dehydrogenase (GDH) complex, to elucidate its characteristic properties as well as to investigate its potential application as the future immunosensor platform. The gold disk electrodes (GDEs) with DET-type FADGDH prepared using self-assembled monolayer (SAM) showed the glucose concentration dependent impedance change, which was confirmed by the change in the charge transfer resistance (Rct). The Δ(1/Rct) values were also affected by DC bias potential and the length of SAM. Based on the Nyquist plot and Bode plot simulations, glucose sensing by imaginary impedance monitoring under fixed frequency (5 mHz) was carried out, revealing the higher sensitivity at low glucose concentration with wider linear range (0.02-0.2 mM). Considering this high sensitivity toward glucose, the 3rd-generation faradaic enzyme EIS sensor would provide alternative platform for future impedimetric immunosensing system, which does not use redox probe.


Subject(s)
Biosensing Techniques/methods , Glucose 1-Dehydrogenase/chemistry , Glucose/analysis , Bacteria/enzymology , Electric Impedance , Electrodes , Electron Transport , Flavin-Adenine Dinucleotide/chemistry , Gold/chemistry
12.
Biosens Bioelectron ; 123: 114-123, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30057265

ABSTRACT

Fungi-derived flavin adenine dinucleotide glucose dehydrogenases (FADGDHs) are currently the most popular and advanced enzymes for self-monitoring of blood glucose sensors; however, the achievement of direct electron transfer (DET) with FADGDHs is difficult. In this study, a designer FADGDH was constructed by fusing Aspergillus flavus derived FADGDH (AfGDH) and a Phanerochaete chrisosporium CDH (PcCDH)-derived heme b-binding cytochrome domain to develop a novel FADGDH that is capable of direct electron transfer with an electrode. A structural prediction suggested that the heme in the CDH may exist in proximity to the FAD of AfGDH if the heme b-binding cytochrome domain is fused to the AfGDH N-terminal region. Spectroscopic observations of recombinantly produced designer FADGDH confirmed the intramolecular electron transfer between FAD and the heme. A decrease in pH and the presence of a divalent cation improved the intramolecular electron transfer. An enzyme electrode with the immobilized designer FADGDH showed an increase in current immediately after the addition of glucose in a glucose concentration-dependent manner, whereas those with wild-type AfGDH did not show an increase in current. Therefore, the designer FADGDH was confirmed to be a novel GDH that possesses electrode DET ability. The difference in the surface electrostatic potentials of AfGDH and the catalytic domain of PcCDH might be why their intramolecular electron transfer ability is inferior to that of CDH. These relevant and consistent findings provide us with a novel strategic approach for the improvement of the DET properties of designer FADGDH. (241 words).


Subject(s)
Aspergillus flavus/enzymology , Biosensing Techniques , Blood Glucose/isolation & purification , Glucose Dehydrogenases/chemistry , Aspergillus flavus/chemistry , Catalytic Domain , Electrodes , Electron Transport , Flavin-Adenine Dinucleotide/chemistry , Heme/chemistry
13.
Bioelectrochemistry ; 121: 185-190, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29471242

ABSTRACT

Enzyme based electrochemical biosensors are divided into three generations according to their type of electron transfer from the cofactors of the enzymes to the electrodes. Although the 3rd generation sensors using direct electron transfer (DET) type enzymes are ideal, the number of enzyme types which possess DET ability is limited. In this study, we report of a glucose sensor using mediator-modified glucose dehydrogenase (GDH), that was fabricated by a new quick-and-easy method using the pre-functionalized amine reactive phenazine ethosulfate (arPES). Thus mediator-modified GDH obtained the ability to transfer electrons to bulky electron acceptors as well as electrodes. The concentration of glucose was successfully measured using electrodes with immobilized PES-modified GDH, without addition of external electron mediators. Therefore, continuous monitoring systems can be developed based on this "2.5th generation" electron transfer principle utilizing quasi-DET. Furthermore, we successfully modified two other diagnostically relevant enzymes, glucoside 3-dehydrogenase and lactate oxidase, with PES. Therefore, various kinds of diagnostic enzymes can achieve quasi-DET ability simply by modification with arPES, suggesting that continuous monitoring systems based on the 2.5th generation principle can be developed for various target molecules.


Subject(s)
Biosensing Techniques/methods , Botrytis/enzymology , Enzymes, Immobilized/chemistry , Glucose 1-Dehydrogenase/chemistry , Glucose/analysis , Aerococcus/enzymology , Agrobacterium tumefaciens/enzymology , Blood Glucose/analysis , Electron Transport , Glucose Dehydrogenases/chemistry , Humans , Mixed Function Oxygenases/chemistry , Phenazines/chemistry , Recombinant Proteins/chemistry
14.
Int J Mol Sci ; 11(6): 2383-92, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20640159

ABSTRACT

Titanium dioxide (titania) nanoparticle aggregation is an important factor in understanding cytotoxicity. However, the effect of the aggregate size of nanoparticles on cells is unclear. We prepared two sizes of titania aggregate particles and investigated their biological activity by analyzing biomarker expression based on mRNA expression analysis. The aggregate particle sizes of small and large aggregated titania were 166 nm (PDI = 0.291) and 596 nm (PDI = 0.417), respectively. These two size groups were separated by centrifugation from the same initial nanoparticle sample. We analyzed the gene expression of biomarkers focused on stress, inflammation, and cytotoxicity. Large titania aggregates show a larger effect on cell viability and gene expression when compared with the small aggregates. This suggests that particle aggregate size is related to cellular effects.


Subject(s)
Gene Expression , Metal Nanoparticles/chemistry , Particle Size , Titanium/chemistry , Cell Line , Cell Survival , Humans , Metal Nanoparticles/ultrastructure , RNA, Messenger/genetics
15.
Biotechnol Lett ; 30(10): 1753-8, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18516502

ABSTRACT

Enzyme biofuel cells utilizing glucose dehydrogenase as an anode enzyme were constructed. The glucose dehydrogenase is composed of a catalytic subunit, an electron transfer subunit, and a chaperon-like subunit. Cells, constructed using either a glucose dehydrogenase catalytic subunit or a glucose dehydrogenase complex, displayed power outputs that were dependent on the glucose concentration. The catalytic subunit in the anode maintained its catalytic activity for 24 h of operation. The biofuel cell which composed of glucose dehydrogenase complex functioned successfully even in the absence of an electron mediator at the anode cell. These results indicate the potential application of this thermostable glucose dehydrogenase for the construction of a compartment-less biofuel cell.


Subject(s)
Bioelectric Energy Sources , Glucose 1-Dehydrogenase/metabolism , Burkholderia cepacia/genetics , Catalysis , Enzyme Stability , Glucose 1-Dehydrogenase/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...