Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 3729, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31427584

ABSTRACT

The performance of modern chips is strongly related to the multi-layer interconnect structure that interfaces the semiconductor layer with the outside world. The resulting demand to continuously reduce the k-value of the dielectric in these interconnects creates multiple integration challenges and encourages the search for novel materials. Here we report a strategy for the integration of metal-organic frameworks (MOFs) as gap-filling low-k dielectrics in advanced on-chip interconnects. The method relies on the selective conversion of purpose-grown or native metal-oxide films on the metal interconnect lines into MOFs by exposure to organic linker vapor. The proposed strategy is validated for thin films of the zeolitic imidazolate frameworks ZIF-8 and ZIF-67, formed in 2-methylimidazole vapor from ALD ZnO and native CoOx, respectively. Both materials show a Young's modulus and dielectric constant comparable to state-of-the-art porous organosilica dielectrics. Moreover, the fast nucleation and volume expansion accompanying the oxide-to-MOF conversion enable uniform growth and gap-filling of narrow trenches, as demonstrated for 45 nm half-pitch fork-fork capacitors.

2.
Chemphyschem ; 19(18): 2295-2298, 2018 09 18.
Article in English | MEDLINE | ID: mdl-29924463

ABSTRACT

Periodic mesoporous organosilica (PMO) thin films were synthesized by evaporation-induced self-assembly of 1,2-bis(triethoxysilyl)ethane and an ionic Gemini 16-12-16 surfactant under acidic conditions. The films were characterized by Fourier-transform infrared spectroscopy, grazing-incidence small-angle X-ray scattering, ellipsometric porosimetry, impedance measurements, and nanoindentation. The ease of control of the packing parameter in Gemini surfactants makes the PMO film templated by a Gemini an exciting first step towards small pore size PMO films with engineered mesostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...