Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Phytochemistry ; 217: 113891, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37844789

ABSTRACT

Competition for soil nutrients and water with other plants foster competition within the biosphere for access to these limited resources. The roots for the common grain sorghum produce multiple small molecules that are released via root exudates into the soil to compete with other plants. Sorgoleone is one such compound, which suppresses weed growth near sorghum by acting as a quinone analog and interferes with photosynthesis. Since sorghum also grows photosynthetically, and may be susceptible to sorgoleone action if present in tissues above ground, it is essential to exude sorgoleone efficiently. However, since the P450 enzymes that synthesize sorgoleone are intracellular, the release mechanism for sorgoleone remain unclear. In this study, we conducted an in silico assessment for sorgoleone and its precursors to passively permeate biological membranes. To facilitate accurate simulation, CHARMM parameters were newly optimized for sorgoleone and its precursors. These parameters were used to conduct 1 µs of unbiased molecular dynamics simulations to compare the permeability of sorgoleone with its precursors molecules. We find that interleaflet transfer is maximized for sorgoleone, suggesting that the precursor molecules may remain in the same leaflet for access by biosynthetic P450 enzymes. Since no sorgoleone was extracted during unbiased simulations, we compute a permeability coefficient using the inhomogeneous solubility diffusion model. The requisite free energy and diffusivity profiles for sorgoleone through a sorghum membrane model were determined through Replica Exchange Umbrella Sampling (REUS) simulations. The REUS calculations highlight that any soluble sorgoleone would quickly insert into a lipid bilayer, and would readily transit. When sorgoleone forms aggregates in root exudate as indicated by our equilibrium simulations, aggregate formation would lower the effective concentration in aqueous solution, creating a concentration gradient that would facilitate passive transport. This suggests that sorgoleone synthesis occurs within sorghum root cells and that sorgoleone is exuded by permeating through the cell membrane without the need for a transport protein once the extracellular sorgoleone aggregate is formed.


Subject(s)
Sorghum , Sorghum/chemistry , Pheromones/analysis , Pheromones/metabolism , Pheromones/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Exudates and Transudates , Permeability , Soil , Plant Roots/chemistry
2.
Plant J ; 115(3): 820-832, 2023 08.
Article in English | MEDLINE | ID: mdl-37118879

ABSTRACT

Ammonium in the soil is converted into nitrate by nitrifying bacteria or archaea. While nitrate is readily available for plants, it is prone to leaching and contributes to eutrophication. In addition, when the soil conditions become anaerobic, nitrate can be reduced to nitrous oxide, a powerful greenhouse gas. Therefore, slowing nitrification in agricultural soil offers some benefits by reducing nitrogen loss and decreasing water and air pollution. Since nitrogen is a limiting nutrient for most ecological niches, many plants have evolved specialized compounds that reduce nitrification. One such compound, sorgoleone, which is secreted from the root hair of sorghum, has been relatively well studied due to its allelopathic function, with most enzymes involved in its biosynthesis elucidated. However, the secretion mechanisms remain unknown. Previous studies reported numerous lipidic vesicles in the sorghum root hair and speculated that they are involved in sorgoleone storage or secretion, but their roles remain unclear. Also, the subcellular organelles that are involved in sorgoleone synthesis have not been identified. In the present study, we found that the expression of sorgoleone biosynthesis enzymes is induced in a specific root zone, indicating that the secretion is developmentally regulated. The accumulation of internal vesicles preceded the peak of sorgoleone biosynthesis and secretion, indicating that the vesicles play a role in precursor storage rather than secretion. Moreover, our data suggest that enzymes that catalyze the first three steps, SbDES2, SbDES3, and SbARS1, interact with each other to form a multi-enzyme complex on the endoplasmic reticulum surface.


Subject(s)
Nitrates , Sorghum , Nitrates/metabolism , Lipids , Benzoquinones/metabolism , Soil , Sorghum/metabolism
3.
Int J Mol Sci ; 23(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36293517

ABSTRACT

Wheat flour's end-use quality is tightly linked to the quantity and composition of storage proteins in the endosperm. TAM 111 and TAM 112 are two popular cultivars grown in the Southern US Great Plains with significantly different protein content. To investigate regulatory differences, transcriptome data were analyzed from developing grains at early- and mid-filling stages. At the mid-filling stage, TAM 111 preferentially upregulated starch metabolism-related pathways compared to TAM 112, whereas amino acid metabolism and transporter-related pathways were over-represented in TAM 112. Elemental analyses also indicated a higher N percentage in TAM 112 at the mid-filling stage. To explore the regulatory variation, weighted correlation gene network was constructed from publicly available RNAseq datasets to identify the modules differentially regulated in TAM 111 and TAM 112. Further, the potential transcription factors (TFs) regulating those modules were identified using graphical least absolute shrinkage and selection operator (GLASSO). Homologs of the OsNF-Y family members with known starch metabolism-related functions showed higher connectivities in TAM 111. Multiple TFs with high connectivity in TAM 112 had predicted functions associated with ABA response in grain. These results will provide novel targets for breeders to explore and further our understanding in mechanisms regulating grain development.


Subject(s)
Plant Proteins , Triticum , Triticum/metabolism , Plant Proteins/metabolism , Flour , Gene Expression Profiling , Edible Grain/metabolism , Transcriptome , Transcription Factors/metabolism , Starch/metabolism , Amino Acids/metabolism , Gene Expression Regulation, Plant
4.
Plant Physiol ; 189(4): 2315-2331, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35579373

ABSTRACT

Plants live under the constant challenge of microbes that probe the environment in search of potential hosts. Plant cells perceive microbe-associated molecular patterns (MAMPs) from incoming microbes and activate defense responses that suppress attempted infections. Despite the substantial progress made in understanding MAMP-triggered signaling pathways, the downstream mechanisms that suppress bacterial growth and disease remain poorly understood. Here, we uncover how MAMP perception in Arabidopsis (Arabidopsis thaliana) elicits dynamic changes in extracellular concentrations of free L-amino acids (AA). Within the first 3 h of MAMP perception, a fast and transient inhibition of AA uptake produces a transient increase in extracellular AA concentrations. Within 4 and 12 h of MAMP perception, a sustained enhanced uptake activity decreases the extracellular concentrations of AA. Gene expression analysis showed that salicylic acid-mediated signaling contributes to inducing the expression of AA/H+ symporters responsible for the MAMP-induced enhanced uptake. A screening of loss-of-function mutants identified the AA/H+ symporter lysin/histidine transporter-1 as an important contributor to MAMP-induced enhanced uptake of AA. Infection assays in lht1-1 seedlings revealed that high concentrations of extracellular AA promote bacterial growth in the absence of induced defense elicitation but contribute to suppressing bacterial growth upon MAMP perception. Overall, the data presented in this study reveal a mechanistic connection between MAMP-induced plant defense and suppression of bacterial growth through the modulation of AA transport activity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Amino Acids/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Plant Diseases/microbiology , Salicylic Acid/metabolism , Seedlings/genetics , Seedlings/metabolism
5.
Sci Rep ; 12(1): 348, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013480

ABSTRACT

Wheat grain protein content and composition are important for its end-use quality. Protein synthesis during the grain filling phase is supported by the amino acids remobilized from the vegetative tissue, the process in which both amino acid importers and exporters are expected to be involved. Previous studies identified amino acid importers that might function in the amino acid remobilization in wheat. However, the amino acid exporters involved in this process have been unexplored so far. In this study, we have curated the Usually Multiple Amino acids Move In and out Transporter (UMAMIT) family of transporters in wheat. As expected, the majority of UMAMITs were found as triads in the A, B, and D genomes of wheat. Expression analysis using publicly available data sets identified groups of TaUMAMITs expressed in root, leaf, spike, stem and grain tissues, many of which were temporarily regulated. Strong expression of TaUMAMITs was detected in the late senescing leaves and transfer cells in grains, both of which are the expected site of apoplastic amino acid transport during grain filling. Biochemical characterization of selected TaUMAMITs revealed that TaUMAMIT17 shows a strong amino acid export activity and might play a role in amino acid transfer to the grains.


Subject(s)
Amino Acid Transport Systems/metabolism , Amino Acids/metabolism , Edible Grain/metabolism , Plant Proteins/metabolism , Triticum/metabolism , Amino Acid Transport Systems/genetics , Databases, Genetic , Edible Grain/genetics , Edible Grain/growth & development , Gene Expression Regulation, Plant , Plant Proteins/genetics , Tissue Distribution , Triticum/genetics , Triticum/growth & development
6.
Plant J ; 109(3): 664-674, 2022 02.
Article in English | MEDLINE | ID: mdl-34783104

ABSTRACT

Plants use electrical and chemical signals for systemic communication. Herbivory, for instance, appears to trigger local apoplasmic glutamate accumulation, systemic electrical signals, and calcium waves that travel to report insect damage to neighboring leaves and initiate defense. To monitor extra- and intracellular glutamate concentrations in plants, we generated Arabidopsis lines expressing genetically encoded fluorescent glutamate sensors. In contrast to cytosolically localized sensors, extracellularly displayed variants inhibited plant growth and proper development. Phenotypic analyses of high-affinity display sensor lines revealed that root meristem development, particularly the quiescent center, number of lateral roots, vegetative growth, and floral architecture were impacted. Notably, the severity of the phenotypes was positively correlated with the affinity of the display sensors, intimating that their ability to sequester glutamate at the surface of the plasma membrane was responsible for the defects. Root growth defects were suppressed by supplementing culture media with low levels of glutamate. Together, the data indicate that sequestration of glutamate at the cell surface either disrupts the supply of glutamate to meristematic cells and/or impairs localized glutamatergic signaling important for developmental processes.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/metabolism , Cell Membrane/metabolism , Glutamic Acid/genetics , Glutamic Acid/metabolism , Plant Development/genetics , Plant Leaves/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Plant Development/drug effects , Plant Leaves/genetics
8.
Front Plant Sci ; 11: 606386, 2020.
Article in English | MEDLINE | ID: mdl-33574824

ABSTRACT

In addition to their role in the biosynthesis of important molecules such as proteins and specialized metabolites, amino acids are known to function as signaling molecules through various pathways to report nitrogen status and trigger appropriate metabolic and cellular responses. Moreover, changes in amino acid levels through altered amino acid transporter activities trigger plant immune responses. Specifically, loss of function of major amino acid transporter, over-expression of cationic amino acid transporter, or over-expression of the positive regulators of membrane amino acid export all lead to dwarfed phenotypes and upregulated salicylic acid (SA)-induced stress marker genes. However, whether increasing amino acid exporter protein levels lead to similar stress phenotypes has not been investigated so far. Recently, a family of transporters, namely USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTERS (UMAMITs), were identified as amino acid exporters. The goal of this study was to investigate the effects of increased amino acid export on plant development, growth, and reproduction to further examine the link between amino acid transport and stress responses. The results presented here show strong evidence that an increased expression of UMAMIT transporters induces stress phenotypes and pathogen resistance, likely due to the establishment of a constitutive stress response via a SA-dependent pathway.

9.
Int J Mol Sci ; 20(23)2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31766598

ABSTRACT

Watermelon fruit contains a high percentage of amino acid citrulline (Cit) and arginine (Arg). Cit and Arg accumulation in watermelon fruit are most likely mediated by both de novo synthesis from other amino acids within fruits and direct import from source tissues (leaves) through the phloem. The amino acid transporters involved in the import of Cit, Arg, and their precursors into developing fruits of watermelon have not been reported. In this study, we have compiled the list of putative amino acid transporters in watermelon and characterized transporters that are expressed in the early stage of fruit development. Using the yeast complementation study, we characterized ClAAP3 (Cla023187) and ClAAP6 (Cla023090) as functional amino acid transporters belonging to the family of amino acid permease (AAP) genes. The yeast growth and uptake assays of radiolabeled amino acid suggested that ClAAP3 and ClAAP6 can transport a broad spectrum of amino acids. Expression of translational fusion proteins with a GFP reporter in Nicotiana benthamiana leaves confirmed the ER- and plasma membrane-specific localization, suggesting the role of ClAAP proteins in the cellular import of amino acids. Based on the gene expression profiles and functional characterization, ClAAP3 and ClAAP6 are expected to play a major role in regulation of amino acid import into developing watermelon fruits.


Subject(s)
Amino Acid Transport Systems/biosynthesis , Citrullus/metabolism , Fruit/metabolism , Plant Proteins/biosynthesis , Amino Acid Transport Systems/genetics , Arginine/genetics , Arginine/metabolism , Citrulline/genetics , Citrulline/metabolism , Citrullus/genetics , Fruit/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Substrate Specificity , Nicotiana/genetics , Nicotiana/metabolism
10.
J Exp Bot ; 69(21): 5221-5232, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30312461

ABSTRACT

Phloem-derived amino acids are the major source of nitrogen supplied to developing seeds. Amino acid transfer from the maternal to the filial tissue requires at least one cellular export step from the maternal tissue prior to the import into the symplasmically isolated embryo. Some members of UMAMIT (usually multiple acids move in an out transporter) family (UMAMIT11, 14, 18, 28, and 29) have previously been implicated in this process. Here we show that additional members of the UMAMIT family, UMAMIT24 and UMAMIT25, also function in amino acid transfer in developing seeds. Using a recently published yeast-based assay allowing detection of amino acid secretion, we showed that UMAMIT24 and UMAMIT25 promote export of a broad range of amino acids in yeast. In plants, UMAMIT24 and UMAMIT25 are expressed in distinct tissues within developing seeds; UMAMIT24 is mainly expressed in the chalazal seed coat and localized on the tonoplast, whereas the plasma membrane-localized UMAMIT25 is expressed in endosperm cells. Seed amino acid contents of umamit24 and umamit25 knockout lines were both decreased during embryogenesis compared with the wild type, but recovered in the mature seeds without any deleterious effect on yield. The results suggest that UMAMIT24 and 25 play different roles in amino acid translocation from the maternal to filial tissue; UMAMIT24 could have a role in temporary storage of amino acids in the chalaza, while UMAMIT25 would mediate amino acid export from the endosperm, the last step before amino acids are taken up by the developing embryo.


Subject(s)
Amino Acids/metabolism , Arabidopsis/genetics , Seeds/metabolism , Arabidopsis/embryology , Arabidopsis/metabolism , Gene Expression Profiling , Seeds/growth & development
11.
Bio Protoc ; 8(14): e2944, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-34395757

ABSTRACT

CRISPR/Cas9 made targeted mutagenesis and genome editing possible for many plant species. One of the ways that the endonuclease is used for plant genetics is the creation of loss-of-function mutants, which typically result from erroneous DNA repair through non-homologous end joining (NHEJ) pathway. The majority of erroneous repair events results in single-bp insertion or deletion. While single-bp insertions or deletions (indels) effectively destroy the function of protein-coding genes through frameshift, detection is difficult due to the small size shift. High-resolution melting temperature analysis allows quick detection, and it does not require any additional pipetting steps after the PCR amplification of the region of interest. In this protocol, we will describe the steps required for the analysis of potential homozygous mutants.

12.
Front Plant Sci ; 8: 1171, 2017.
Article in English | MEDLINE | ID: mdl-28725235

ABSTRACT

CRISPR-Cas9 system rapidly became an indispensable tool in plant biology to perform targeted mutagenesis. A CRISPR-Cas9-mediated double strand break followed by non-homologous end joining (NHEJ) repair most frequently results in a single base pair deletion or insertions (indels), which is hard to detect using methods based on enzymes that detect heteroduplex DNA. In addition, somatic tissues of the T1 generation inevitably contain a mosaic population, in which the portion of cells carrying the mutation can be too small to be detected by the enzyme-based methods. Here we report an optimized experimental protocol for detecting Arabidopsis mutants carrying a CRISPR-Cas9 mediated mutation, using high-resolution melting (HRM) curve analysis. Single-base pair insertion or deletion (indel) can be easily detected using this method. We have also examined the detection limit for the template containing a one bp indel compared to the WT genome. Our results show that <5% of mutant DNA containing one bp indel can be detected using this method. The vector developed in this study can be used with a Gateway technology-compatible derivative of pCUT vectors, with which off-target mutations could not be detected even by a whole genome sequencing.

13.
Curr Opin Plant Biol ; 39: 129-135, 2017 10.
Article in English | MEDLINE | ID: mdl-28750256

ABSTRACT

Nitrogen and phosphorus are macronutrients indispensable for plant growth. The acquisition and reallocation of both elements require a multitude of dedicated transporters that specifically recognize inorganic and organic forms of nitrogen and phosphorous. Although many transporters have been discovered through elegant screening processes and sequence homology, many remain uncharacterized for their functions in planta. Genetically encoded sensors for nitrogen and phosphorous molecules offer a unique opportunity for studying transport mechanisms that were previously inaccessible. In the past few years, sensors for some of the key nitrogen molecules became available, and many improvements have been made for existing sensors for phosphorus molecules. Methodologies for detailed in vivo analysis also improved. We summarize the recent improvements in genetically encoded sensors for nitrogen and phosphorus molecules, and the discoveries made by using such sensors.


Subject(s)
Nitrogen Compounds/metabolism , Phosphorus Compounds/metabolism , Plants/metabolism , Plants/genetics
14.
J Exp Bot ; 67(22): 6385-6397, 2016 12.
Article in English | MEDLINE | ID: mdl-27856708

ABSTRACT

Amino acids are the main form of nitrogen transported between the plant organs. Transport of amino acids across membranes is mediated by specialized proteins: importers, exporters, and facilitators. Unlike amino acid importers, amino acid exporters have not been thoroughly studied, partly due to a lack of high-throughput techniques enabling their isolation. Usually Multiple Acids Move In and out Transporters 14 (UMAMIT14) from Arabidopsis shares sequence similarity to the amino acid facilitator Silique Are Red1 (UMAMIT18), and has been shown to be involved in amino acid transfer to the seeds. We show here that UMAMIT14 is also expressed in root pericycle and phloem cells and mediates export of a broad range of amino acids in yeast. Loss-of-function of UMAMIT14 leads to a reduced shoot-to-root and root-to-medium transfer of amino acids originating from the leaves. These fluxes were further reduced in an umamti14 umamit18 double loss-of-function mutant. This study suggests that UMAMIT14 is involved in phloem unloading of amino acids in roots, and that UMAMIT14 and UMAMIT18 are involved in the radial transport of amino acids in roots, which is essential for maintaining amino acid secretion to the soil.


Subject(s)
Amino Acid Transport Systems/physiology , Arabidopsis Proteins/physiology , Arabidopsis/physiology , Phloem/physiology , Plant Roots/physiology , Amino Acid Transport Systems/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Microscopy, Confocal , Phloem/metabolism , Plant Roots/metabolism , Real-Time Polymerase Chain Reaction , Seedlings/metabolism , Seedlings/physiology
17.
J Vis Exp ; (89): e51657, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25146898

ABSTRACT

Genetically encoded sensors allow real-time monitoring of biological molecules at a subcellular resolution. A tremendous variety of such sensors for biological molecules became available in the past 15 years, some of which became indispensable tools that are used routinely in many laboratories. One of the exciting applications of genetically encoded sensors is the use of these sensors in investigating cellular transport processes. Properties of transporters such as kinetics and substrate specificities can be investigated at a cellular level, providing possibilities for cell-type specific analyses of transport activities. In this article, we will demonstrate how transporter dynamics can be observed using genetically encoded glutamine sensor as an example. Experimental design, technical details of the experimental settings, and considerations for post-experimental analyses will be discussed.


Subject(s)
Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Glutamine/genetics , Glutamine/metabolism , Animals , COS Cells , Glutamine/analysis , Microscopy, Fluorescence/methods , Subcellular Fractions/chemistry , Subcellular Fractions/metabolism
18.
Bioinformatics ; 30(2): 251-7, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24215020

ABSTRACT

MOTIVATION: Expression vectors used in different biotechnology applications are designed with domain-specific rules. For instance, promoters, origins of replication or homologous recombination sites are host-specific. Similarly, chromosomal integration or viral delivery of an expression cassette imposes specific structural constraints. As de novo gene synthesis and synthetic biology methods permeate many biotechnology specialties, the design of application-specific expression vectors becomes the new norm. In this context, it is desirable to formalize vector design strategies applicable in different domains. RESULTS: Using the design of constructs to express genes in the chloroplast of Chlamydomonas reinhardtii as an example, we show that a vector design strategy can be formalized as a domain-specific language. We have developed a graphical editor of context-free grammars usable by biologists without prior exposure to language theory. This environment makes it possible for biologists to iteratively improve their design strategies throughout the course of a project. It is also possible to ensure that vectors designed with early iterations of the language are consistent with the latest iteration of the language. AVAILABILITY AND IMPLEMENTATION: The context-free grammar editor is part of the GenoCAD application. A public instance of GenoCAD is available at http://www.genocad.org. GenoCAD source code is available from SourceForge and licensed under the Apache v2.0 open source license.


Subject(s)
Algorithms , Chlamydomonas reinhardtii/genetics , Gene Expression Regulation, Plant , Genes, Plant/genetics , Genetic Vectors/genetics , Regulatory Sequences, Nucleic Acid/genetics , 5' Untranslated Regions/genetics , Chloroplasts/genetics , Genome, Plant , Operon , Recombination, Genetic , Software
19.
Methods Mol Biol ; 1083: 55-64, 2014.
Article in English | MEDLINE | ID: mdl-24218210

ABSTRACT

Cellular metabolites and ions can exhibit very specific spatiotemporal dynamics that are very challenging to monitor using extraction-based methods. Genetically encoded Föster resonance energy transfer sensors afford a powerful method of measuring these dynamics in situ and hence are now widely used in order to decode information communicated through the dynamics of cellular metabolites and ions. This methodology involves (1) the development of a suitable sensor, (2) genetic engineering of the sensor for its expression in the tissue of interest, and (3) measurement and characterization of the cellular metabolites and ions using optical imaging. This chapter describes the measurement aspects. We describe the imaging setup, sample preparation from leaf discs and root cells, performance of a perfusion experiment, and quantification of metabolite and ion concentrations from the imaging data. We also describe post-experiment analysis including estimation of sensor efficiency and spectral bleedthrough.


Subject(s)
Biosensing Techniques , Fluorescence Resonance Energy Transfer , Metabolome , Metabolomics/methods , Microscopy, Fluorescence , Plants/chemistry , Plants/metabolism , Fluorescence Resonance Energy Transfer/methods , Microscopy, Fluorescence/methods , Plant Roots/metabolism
20.
Plant Signal Behav ; 8(12): e27034, 2013.
Article in English | MEDLINE | ID: mdl-24300102

ABSTRACT

The plant Glutamate-Like Receptors (GLRs) are homologs of animal ionotropic glutamate receptors (iGluRs), and are hypothesized to be potential amino acid sensors in plants. Genetic studies of proteins from this family implicate individual GLRs in a diversity of physiological roles in plants. Recently, amino-acid gated channel activities have been proven for a few plant GLRs, suggesting that at least some of the functional mechanisms are conserved between plant GLRs and animal iGluRs. Animal iGluRs generally form heterotetramers, and the ligand-binding specificity and channel functionality is determined by interaction between the subunits. In order to investigate whether plant GLRs interact with each other, a modified yeast-2-hybrid system (mbSUS) approach was taken on 15 of the 20 Arabidopsis GLRs to identify potential interaction partners. Using this approach, we have successfully identified GLR subunits that are capable of interacting with multiple other GLRs. Unlike iGluRs, sequence similarity between the subunit was not correlated with the likelihood of interaction among 2 given subunits. Interactions between selected GLRs (GLR1.1, 2.9, 3.2, and 3.4) were further tested in another heterologous expression system, mammalian HEK293 cells, using Förster resonance energy transfer (FRET). Two separate approaches (sensitized FRET and acceptor photobleaching) indicated that GLRs 1.1 and 3.4 are capable of forming homomers, whereas other combinations did not result in detectable FRET between the subunits.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Protein Subunits/metabolism , Receptors, Glutamate/metabolism , Fluorescence Resonance Energy Transfer , HEK293 Cells , Humans , Protein Binding , Recombinant Fusion Proteins/metabolism , Two-Hybrid System Techniques , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...