Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Chem Commun (Camb) ; 60(48): 6134-6137, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38829522

ABSTRACT

Compounds harboring high acidity and oxidizability of thiol groups permit tuning the redox equilibrium constants of CxxC sites of members of the protein disulphide isomerase (PDI) family and thus can be used to accelerate folding processes and increase the production of native proteins by minimal loading in comparison to glutathione.


Subject(s)
Protein Disulfide-Isomerases , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/chemistry , Oxidation-Reduction , Protein Folding , Amino Acid Motifs , Humans , Glutathione/metabolism , Glutathione/chemistry
2.
Chem Sci ; 15(7): 2282-2299, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38362427

ABSTRACT

Proper folding is essential for the biological functions of all proteins. The folding process is intrinsically error-prone, and the misfolding of a polypeptide chain can cause the formation of toxic aggregates related to pathological outcomes such as neurodegenerative disease and diabetes. Chaperones and some enzymes are involved in the cellular proteostasis systems that assist polypeptide folding to diminish the risk of aggregation. Elucidating the molecular mechanisms of chaperones and related enzymes is important for understanding proteostasis systems and protein misfolding- and aggregation-related pathophysiology. Furthermore, mechanistic studies of chaperones and related enzymes provide important clues to designing chemical mimics, or chemical chaperones, that are potentially useful for recovering proteostasis activities as therapeutic approaches for treating and preventing protein misfolding-related diseases. In this Perspective, we provide a comprehensive overview of the latest understanding of the folding-promotion mechanisms by chaperones and oxidoreductases and recent progress in the development of chemical mimics that possess activities comparable to enzymes, followed by a discussion of future directions.

3.
Commun Chem ; 6(1): 258, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989850

ABSTRACT

Seleno-insulin, a class of artificial insulin analogs, in which one of the three disulfide-bonds (S-S's) of wild-type insulin (Ins) is replaced by a diselenide-bond (Se-Se), is attracting attention for its unique chemical and physiological properties that differ from those of Ins. Previously, we pioneered the development of a [C7UA,C7UB] analog of bovine pancreatic insulin (SeIns) as the first example, and demonstrated its high resistance against insulin-degrading enzyme (IDE). In this study, the conditions for the synthesis of SeIns via native chain assembly (NCA) were optimized to attain a maximum yield of 72%, which is comparable to the in vitro folding efficiency for single-chain proinsulin. When the resistance of BPIns to IDE was evaluated in the presence of SeIns, the degradation rate of BPIns became significantly slower than that of BPIns alone. Furthermore, the investigation on the intermolecular association properties of SeIns and BPIns using analytical ultracentrifugation suggested that SeIns readily forms oligomers not only with its own but also with BPIns. The hypoglycemic effect of SeIns on diabetic rats was observed at a dose of 150 µg/300 g rat. The strategy of replacing the solvent-exposed S-S with Se-Se provides new guidance for the design of long-acting insulin formulations.

4.
Chem Sci ; 14(28): 7630-7636, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37476727

ABSTRACT

We report the first example of a synthetic thiol-based compound that promotes oxidative protein folding upon 1-equivalent loading to the disulfide bonds in the client protein to afford the native form in over 70% yield. N-Methylation is a central post-translational processing of proteins in vivo for regulating functions including chaperone activities. Despite the universally observed biochemical reactions in nature, N-methylation has hardly been utilized in the design, functionalization, and switching of synthetic bioregulatory agents, particularly folding promotors. As a biomimetic approach, we developed pyridinylmethanethiols to investigate the effects of N-methylation on the promotion of oxidative protein folding. For a comprehensive study on the geometrical effects, constitutional isomers of pyridinylmethanethiols with ortho-, meta-, and para-substitutions have been synthesized. Among the constitutional isomers, para-substituted pyridinylmethanethiol showed the fastest disulfide-bond formation of the client proteins to afford the native forms most efficiently. N-Methylation drastically increased the acidity and enhanced the oxidizability of the thiol groups in the pyridinylmethanethiols to enhance the folding promotion efficiencies. Among the isomers, para-substituted N-methylated pyridinylmethanethiol accelerated the oxidative protein folding reactions with the highest efficiency, allowing for protein folding promotion by 1-equivalent loading as a semi-enzymatic activity. This study will offer a novel bioinspired molecular design of synthetic biofunctional agents that are semi-enzymatically effective for the promotion of oxidative protein folding including biopharmaceuticals such as insulin in vitro by minimum loading.

5.
RSC Adv ; 12(41): 26658-26664, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36275147

ABSTRACT

Folding is a key process to form functional conformations of proteins. Folding via on-pathway intermediates leads to the formation of native structures, while folding through off-pathways affords non-native and disease-causing forms. Trapping folding intermediates and misfolded forms is important for investigating folding mechanisms and disease-related biological properties of the misfolded proteins. We developed cysteine-containing dipeptides conjugated with amino acids possessing mono- and diamino-groups. In oxidative protein folding involving disulfide-bond formation, the addition of cysteine and oxidized glutathione readily promoted the folding to afford native forms. In contrast, despite the acceleration of disulfide-bond formation, non-native isomers formed in significantly increased yields upon the addition of the dipeptides. This study provides a molecular design of cysteine-based protein-folding modulators that afford proteins adopting non-native conformations through intermolecular disulfide-bond formation. Because of the intrinsic reversibility of the disulfide bonds upon redox reactions, the disulfide bond-based approach demonstrated here is expected to lead to the development of reversible methodologies for trapping transient and misfolded forms by intermolecular disulfide bond formation and restarting the folding processes of the trapped forms by subsequent cleavage of the intermolecular disulfide bonds.

8.
New Phytol ; 236(3): 864-877, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35976788

ABSTRACT

Plant stomata play an important role in CO2 uptake for photosynthesis and transpiration, but the mechanisms underlying stomatal opening and closing under changing environmental conditions are still not completely understood. Through large-scale genetic screening, we isolated an Arabidopsis mutant (closed stomata2 (cst2)) that is defective in stomatal opening. We cloned the causal gene (MGR1/CST2) and functionally characterized this gene. The mutant phenotype was caused by a mutation in a gene encoding an unknown protein with similarities to the human magnesium (Mg2+ ) efflux transporter ACDP/CNNM. MGR1/CST2 was localized to the tonoplast and showed transport activity for Mg2+ . This protein was constitutively and highly expressed in guard cells. Knockout of this gene resulted in stomatal closing, decreased photosynthesis and growth retardation, especially under high Mg2+ conditions, while overexpression of this gene increased stomatal opening and tolerance to high Mg2+ concentrations. Furthermore, guard cell-specific expression of MGR1/CST2 in the mutant partially restored its stomatal opening. Our results indicate that MGR1/CST2 expression in the leaf guard cells plays an important role in maintaining cytosolic Mg2+ concentrations through sequestering Mg2+ into vacuoles, which is required for stomatal opening, especially under high Mg2+ conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Humans , Light , Magnesium/metabolism , Magnesium/pharmacology , Mutation/genetics , Plant Stomata/genetics , Vacuoles/metabolism
9.
Biology (Basel) ; 10(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34827105

ABSTRACT

P5 is one of protein disulfide isomerase family proteins (PDIs) involved in endoplasmic reticulum (ER) protein quality control that assists oxidative folding, inhibits protein aggregation, and regulates the unfolded protein response. P5 reportedly interacts with other PDIs via intermolecular disulfide bonds in cultured cells, but it remains unclear whether complex formation between P5 and other PDIs is involved in regulating enzymatic and chaperone functions. Herein, we established the far-western blot method to detect non-covalent interactions between P5 and other PDIs and found that PDI and ERp72 are partner proteins of P5. The enzymatic activity of P5-mediated oxidative folding is up-regulated by PDI, while the chaperone activity of P5 is stimulated by ERp72. These findings shed light on the mechanism by which the complex formations among PDIs drive to synergistically accelerate protein folding and prevents aggregation. This knowledge has implications for understanding misfolding-related pathology.

10.
Molecules ; 26(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064874

ABSTRACT

ERp57, a member of the protein disulfide isomerase family, is a ubiquitous disulfide catalyst that functions in the oxidative folding of various clients in the mammalian endoplasmic reticulum (ER). In concert with ER lectin-like chaperones calnexin and calreticulin (CNX/CRT), ERp57 functions in virtually all folding stages from co-translation to post-translation, and thus plays a critical role in maintaining protein homeostasis, with direct implication for pathology. Here, we present mechanisms by which Ca2+ regulates the formation of the ERp57-calnexin complex. Biochemical and isothermal titration calorimetry analyses revealed that ERp57 strongly interacts with CNX via a non-covalent bond in the absence of Ca2+. The ERp57-CNX complex not only promoted the oxidative folding of human leukocyte antigen heavy chains, but also inhibited client aggregation. These results suggest that this complex performs both enzymatic and chaperoning functions under abnormal physiological conditions, such as Ca2+ depletion, to effectively guide proper oxidative protein folding. The findings shed light on the molecular mechanisms underpinning crosstalk between the chaperone network and Ca2+.


Subject(s)
Calcium/metabolism , Calnexin/metabolism , Protein Disulfide-Isomerases/metabolism , Disulfides/metabolism , Humans , Models, Biological , Oxidation-Reduction , Protein Aggregates , Protein Binding , Protein Folding , Thermodynamics
11.
iScience ; 24(4): 102296, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33855279

ABSTRACT

The mammalian endoplasmic reticulum (ER) harbors more than 20 members of the protein disulfide isomerase (PDI) family that act to maintain proteostasis. Herein, we developed an in vitro system for directly monitoring PDI- or ERp46-catalyzed disulfide bond formation in ribosome-associated nascent chains of human serum albumin. The results indicated that ERp46 more efficiently introduced disulfide bonds into nascent chains with a short segment exposed outside the ribosome exit site than PDI. Single-molecule analysis by high-speed atomic force microscopy further revealed that PDI binds nascent chains persistently, forming a stable face-to-face homodimer, whereas ERp46 binds for a shorter time in monomeric form, indicating their different mechanisms for substrate recognition and disulfide bond introduction. Thus, ERp46 serves as a more potent disulfide introducer especially during the early stages of translation, whereas PDI can catalyze disulfide formation when longer nascent chains emerge out from ribosome.

12.
Structure ; 29(12): 1357-1370.e6, 2021 12 02.
Article in English | MEDLINE | ID: mdl-33857433

ABSTRACT

P5, also known as PDIA6, is a PDI family member involved in the ER quality control. Here, we revealed that P5 dimerizes via a unique adhesive motif contained in the N-terminal thioredoxin-like domain. Unlike conventional leucine zipper motifs with leucine residues every two helical turns on ∼30-residue parallel α helices, this adhesive motif includes periodic repeats of leucine/valine residues at the third or fourth position spanning five helical turns on 15-residue anti-parallel α helices. The P5 dimerization interface is further stabilized by several reciprocal salt bridges and C-capping interactions between protomers. A monomeric P5 mutant with the impaired adhesive motif showed structural instability and local unfolding, and behaved as aberrant proteins that induce the ER stress response. Disassembly of P5 to monomers compromised its ability to inactivate IRE1α via intermolecular disulfide bond reduction and its Ca2+-dependent regulation of chaperone function in vitro. Thus, the leucine-valine adhesive motif supports structure and function of P5.


Subject(s)
Leucine/metabolism , Protein Disulfide-Isomerases/metabolism , Valine/metabolism , Dimerization , Humans , Molecular Structure , Protein Folding
13.
Molecules ; 26(4)2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33562280

ABSTRACT

Oxidative protein folding is a biological process to obtain a native conformation of a protein through disulfide-bond formation between cysteine residues. In a cell, disulfide-catalysts such as protein disulfide isomerase promote the oxidative protein folding. Inspired by the active sites of the disulfide-catalysts, synthetic redox-active thiol compounds have been developed, which have shown significant promotion of the folding processes. In our previous study, coupling effects of a thiol group and guanidyl unit on the folding promotion were reported. Herein, we investigated the influences of a spacer between the thiol group and guanidyl unit. A conjugate between thiol and guanidyl units with a diethylene glycol spacer (GdnDEG-SH) showed lower folding promotion effect compared to the thiol-guanidyl conjugate without the spacer (GdnSH). Lower acidity and a more reductive property of the thiol group of GdnDEG-SH compared to those of GdnSH likely resulted in the reduced efficiency of the folding promotion. Thus, the spacer between the thiol and guanidyl groups is critical for the promotion of oxidative protein folding.


Subject(s)
Ethylene Glycol/chemistry , Oxidative Stress/drug effects , Protein Disulfide-Isomerases/chemistry , Sulfhydryl Compounds/chemistry , Catalysis , Cysteine/chemistry , Disulfides/chemistry , Ethylene Glycol/pharmacology , Glutathione/chemistry , Kinetics , Oxidation-Reduction/drug effects , Protein Folding/drug effects , Sulfhydryl Compounds/pharmacology
14.
Curr Opin Struct Biol ; 66: 49-57, 2021 02.
Article in English | MEDLINE | ID: mdl-33176263

ABSTRACT

Time-resolved single-molecule observations by high-speed atomic force microscopy (HS-AFM), have greatly advanced our understanding of how proteins operate to fulfill their unique functions. Using this device, we succeeded in visualizing two members of the protein disulfide isomerase family (PDIs) that act to catalyze oxidative folding and reductive unfolding in the endoplasmic reticulum (ER). ERdj5, an ER-resident disulfide reductase that promotes ER-associated degradation, reduces nonnative disulfide bonds of misfolded proteins utilizing the dynamics of its N-terminal and C-terminal clusters. With unfolded substrates, canonical PDI assembles to form a face-to-face dimer with a central hydrophobic cavity and multiple redox-active sites to accelerate oxidative folding inside the cavity. Altogether, PDIs exert highly dynamic mechanisms to ensure the protein quality control in the ER.


Subject(s)
Protein Disulfide-Isomerases , Protein Folding , Catalysis , Oxidation-Reduction , Oxidative Stress , Protein Disulfide-Isomerases/metabolism
15.
Int J Mol Sci ; 21(24)2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33302492

ABSTRACT

Complicated and sophisticated protein homeostasis (proteostasis) networks in the endoplasmic reticulum (ER), comprising disulfide catalysts, molecular chaperones, and their regulators, help to maintain cell viability. Newly synthesized proteins inserted into the ER need to fold and assemble into unique native structures to fulfill their physiological functions, and this is assisted by protein disulfide isomerase (PDI) family. Herein, we focus on recent advances in understanding the detailed mechanisms of PDI family members as guides for client folding and assembly to ensure the efficient production of secretory proteins.


Subject(s)
Protein Disulfide-Isomerases/metabolism , Protein Folding , Protein Multimerization , Animals , Calnexin/chemistry , Calnexin/metabolism , Calreticulin/chemistry , Calreticulin/metabolism , Humans , Protein Disulfide-Isomerases/chemistry , Proteostasis
16.
Elife ; 92020 11 17.
Article in English | MEDLINE | ID: mdl-33198886

ABSTRACT

Second-generation antipsychotics are widely used to medicate patients with schizophrenia, but may cause metabolic side effects such as diabetes, which has been considered to result from obesity-associated insulin resistance. Olanzapine is particularly well known for this effect. However, clinical studies have suggested that olanzapine-induced hyperglycemia in certain patients cannot be explained by such a generalized mechanism. Here, we focused on the effects of olanzapine on insulin biosynthesis and secretion by mouse insulinoma MIN6 cells. Olanzapine reduced maturation of proinsulin, and thereby inhibited secretion of insulin; and specifically shifted the primary localization of proinsulin from insulin granules to the endoplasmic reticulum. This was due to olanzapine's impairment of proper disulfide bond formation in proinsulin, although direct targets of olanzapine remain undetermined. Olanzapine-induced proinsulin misfolding and subsequent decrease also occurred at the mouse level. This mechanism of olanzapine-induced ß-cell dysfunction should be considered, together with weight gain, when patients are administered olanzapine.


Subject(s)
Diabetes Mellitus/chemically induced , Endoplasmic Reticulum/metabolism , Olanzapine/toxicity , Proinsulin/metabolism , Protein Folding/drug effects , Animals , Antipsychotic Agents/toxicity , Cell Line, Tumor , Diabetes Mellitus/metabolism , Insulinoma , Male , Mice , Mice, Inbred BALB C , Risperidone/toxicity
17.
Plant J ; 104(3): 679-692, 2020 11.
Article in English | MEDLINE | ID: mdl-32780529

ABSTRACT

Phototropins (phot1 and phot2) are plant blue light receptor kinases that function to mediate phototropism, chloroplast movement, leaf flattening, and stomatal opening in Arabidopsis. Considerable progress has been made in understanding the mechanisms associated with phototropin receptor activation by light. However, the identities of phototropin signaling components are less well understood by comparison. In this study, we specifically searched for protein kinases that interact with phototropins by using an in vitro screening method (AlphaScreen) to profile interactions against an Arabidopsis protein kinase library. We found that CBL-interacting protein kinase 23 (CIPK23) interacts with both phot1 and phot2. Although these interactions were verified by in vitro pull-down and in vivo bimolecular fluorescence complementation assays, CIPK23 was not phosphorylated by phot1, as least in vitro. Mutants lacking CIPK23 were found to exhibit impaired stomatal opening in response to blue light but no deficits in other phototropin-mediated responses. We further found that blue light activation of inward-rectifying K+ (K+ in ) channels was impaired in the guard cells of cipk23 mutants, whereas activation of the plasma membrane H+ -ATPase was not. The blue light activation of K+ in channels was also impaired in the mutant of BLUS1, which is one of the phototropin substrates in guard cells. We therefore conclude that CIPK23 promotes stomatal opening through activation of K+ in channels most likely in concert with BLUS1, but through a mechanism other than activation of the H+ -ATPase. The role of CIPK23 as a newly identified component of phototropin signaling in stomatal guard cells is discussed.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Plant Stomata/physiology , Protein Serine-Threonine Kinases/metabolism , Arabidopsis Proteins/genetics , Chloroplasts/metabolism , Light , Mutation , Phosphorylation , Phototropism , Potassium Channels/metabolism , Protein Interaction Maps , Protein Serine-Threonine Kinases/genetics
18.
J Biol Chem ; 295(36): 12772-12785, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32719007

ABSTRACT

Oxidative protein folding occurs primarily in the mammalian endoplasmic reticulum, enabled by a diverse network comprising more than 20 members of the protein disulfide isomerase (PDI) family and more than five PDI oxidases. Although the canonical disulfide bond formation pathway involving Ero1α and PDI has been well-studied so far, the physiological roles of the newly identified PDI oxidases, glutathione peroxidase-7 (GPx7) and -8 (GPx8), are only poorly understood. We here demonstrated that human GPx7 has much higher reactivity with H2O2 and hence greater PDI oxidation activity than human GPx8. The high reactivity of GPx7 is due to the presence of a catalytic tetrad at the redox-active site, which stabilizes the sulfenylated species generated upon the reaction with H2O2 Although it was previously postulated that GPx7 catalysis involved a highly reactive peroxidatic cysteine that can be sulfenylated by H2O2, we revealed that a resolving cysteine instead regulates the PDI oxidation activity of GPx7. We also determined that GPx7 formed complexes preferentially with PDI and P5 in H2O2-treated cells. Altogether, these results suggest that human GPx7 functions as an H2O2-dependent PDI oxidase in cells, whereas PDI oxidation may not be the central physiological role of human GPx8.


Subject(s)
Endoplasmic Reticulum/enzymology , Hydrogen Peroxide/metabolism , Peroxidases/metabolism , Catalysis , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/genetics , Glutathione Peroxidase , Humans , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Peroxidases/chemistry , Peroxidases/genetics , Protein Folding
19.
Biochim Biophys Acta Gen Subj ; 1864(2): 129338, 2020 02.
Article in English | MEDLINE | ID: mdl-30986509

ABSTRACT

In mammalian cells, nearly one-third of proteins are inserted into the endoplasmic reticulum (ER), where they undergo oxidative folding and chaperoning assisted by approximately 20 members of the protein disulfide isomerase family (PDIs). PDIs consist of multiple thioredoxin-like domains and recognize a wide variety of proteins via highly conserved interdomain flexibility. Although PDIs have been studied intensely for almost 50 years, exactly how they maintain protein homeostasis in the ER remains unknown, and is important not only for fundamental biological understanding but also for protein misfolding- and aggregation-related pathophysiology. Herein, we review recent advances in structural biology and biophysical approaches that explore the underlying mechanism by which PDIs fulfil their distinct functions to promote productive protein folding and scavenge misfolded proteins in the ER, the primary factory for efficient production of the secretome.


Subject(s)
Neurodegenerative Diseases/metabolism , Protein Disulfide-Isomerases/metabolism , Animals , Disulfides , Endoplasmic Reticulum , Humans , Membrane Glycoproteins/metabolism , Mice , Mutation , Oxidation-Reduction , Oxidative Stress , Peptides , Protein Denaturation , Protein Domains , Protein Folding , Rats
20.
ACS Nano ; 13(8): 8766-8783, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31310506

ABSTRACT

Complex amyloid aggregation of amyloid-ß (1-40) (Aß1-40) in terms of monomer structures has not been fully understood. Herein, we report the microscopic mechanism and pathways of Aß1-40 aggregation with macroscopic viewpoints through tuning its initial structure and solubility. Partial helical structures of Aß1-40 induced by low solvent polarity accelerated cytotoxic Aß1-40 amyloid fibrillation, while predominantly helical folds did not aggregate. Changes in the solvent polarity caused a rapid formation of ß-structure-rich protofibrils or oligomers via aggregation-prone helical structures. Modulation of the pH and salt concentration transformed oligomers to protofibrils, which proceeded to amyloid formation. We reveal diverse molecular mechanisms underlying Aß1-40 aggregation with conceptual energy diagrams and propose that aggregation-prone partial helical structures are key to inducing amyloidogenesis. We demonstrate that context-dependent protein aggregation is comprehensively understood using the macroscopic phase diagram, which provides general insights into differentiation of amyloid formation and phase separation from unfolded and folded structures.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/ultrastructure , Peptide Fragments/ultrastructure , Protein Aggregation, Pathological/genetics , Protein Conformation, alpha-Helical/genetics , Alzheimer Disease/pathology , Amyloid/chemistry , Amyloid/genetics , Amyloid beta-Peptides/chemistry , Humans , Peptide Fragments/chemistry , Protein Conformation, beta-Strand/genetics , Protein Folding/drug effects , Protein Stability/drug effects , Signal Transduction/drug effects , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...