Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PNAS Nexus ; 3(1): pgad446, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38170115

ABSTRACT

Raltegravir (RAL), a human immunodeficiency virus (HIV)-1 integrase inhibitor, has been administered as part of antiretroviral therapy. Studies in patients with HIV-1 have shown high variability in the pharmacokinetics of RAL, and in healthy volunteers, coadministration of proton-pump inhibitors has been shown to increase the plasma RAL concentrations. Here, we found that RAL containing a 1,3,4-oxadiazole ring is converted to a hydrolysis product (H-RAL) with a cleaved 1,3,4-oxadiazole ring at pH 1.0 and 13.0 conditions in vitro, thereby reducing the anti-HIV activity of the drug. The inclusion of cyclodextrins (beta-cyclodextrin [ßCD], random methyl-ßCD [RAM-ßCD], and hydroxypropyl-ßCD [HP-ßCD]) can protect RAL from pH-induced changes. The conversion of RAL to H-RAL was detected by using various mass spectrometry analyses. The chromatogram of H-RAL increased in a time-dependent manner similar to another 1,3,4-oxadiazole-containing drug, zibotentan, using high-performance liquid chromatography. Oral bioavailability and target protein interactions of H-RAL were predicted to be lower than those of RAL. Moreover, H-RAL exhibited significantly reduced anti-HIV-1 activity, whereas combinations with ßCD, RAM-ßCD, and HP-ßCD attenuated this effect in cell-based assays. These findings suggest that ßCDs can potentially protect against the conversion of RAL to H-RAL under acidic conditions in the stomach, thereby preserving the anti-HIV-1 effect of RAL. Although clinical trials are needed for evaluation, we anticipate that protective devices such as ßCDs may improve the pharmacokinetics of RAL, leading to better treatment outcomes, including reduced dosing, long-term anti-HIV-1 activity, and deeper HIV-1 suppression.

2.
Cell Rep ; 41(4): 111548, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36288708

ABSTRACT

Translation of 5' terminal oligopyrimidine (TOP) mRNAs encoding the protein synthesis machinery is strictly regulated by an amino-acid-sensing mTOR pathway. However, its regulatory mechanism remains elusive. Here, we demonstrate that TOP mRNA translation positively correlates with its poly(A) tail length under mTOR active/amino-acid-rich conditions, suggesting that TOP mRNAs are post-transcriptionally controlled by poly(A) tail-length regulation. Consistent with this, the tail length of TOP mRNAs dynamically fluctuates in response to amino acid availability. The poly(A) tail shortens under mTOR active/amino-acid-rich conditions, whereas the long-tailed TOP mRNAs accumulate under mTOR inactive/amino-acid-starved (AAS) conditions. An RNA-binding protein, LARP1, is indispensable for the process. LARP1 interacts with non-canonical poly(A) polymerases and induces post-transcriptional polyadenylation of the target. Our findings illustrate that LARP1 contributes to the selective accumulation of TOP mRNAs with long poly(A) tails under AAS, resulting in accelerated ribosomal loading onto TOP mRNAs for the resumption of translation after AAS.


Subject(s)
Autoantigens , Ribonucleoproteins , RNA, Messenger/metabolism , Ribonucleoproteins/metabolism , Autoantigens/metabolism , TOR Serine-Threonine Kinases/metabolism , Ribosomes/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Polynucleotide Adenylyltransferase/genetics , Amino Acids/metabolism , Protein Biosynthesis
3.
J Agric Food Chem ; 62(2): 462-7, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24369884

ABSTRACT

The Japanese herb, Ashitaba (Angelica keiskei Koidzumi), contains two prenylated chalcones, 4-hydroxyderricin and xanthoangelol, which are considered to be the major active compounds of Ashitaba. However, their effects on inflammatory responses are poorly understood. In the present study, we investigated the effects and underlying molecular mechanisms of 4-hydroxyderricin and xanthoangelol on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264 mouse macrophages. LPS-mediated production of nitric oxide (NO) was markedly reduced by 4-hydroxyderricin (10 µM) and xanthoangelol (5 µM) compared with their parent compound, chalcone (25 µM). They also inhibited LPS-induced secretion of tumor necrosis factor-alpha (TNF-α) and expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Although chalcone decreased the DNA-binding activity of both activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB), 4-hydroxyderricin and xanthoangelol suppressed only AP-1 and had no effect on NF-κB. On the other hand, all of the tested chalcones reduced the phosphorylation (at serine 536) level of the p65 subunit of NF-κB. 4-Hydroxyderricin and xanthoangelol may be promising for the prevention of inflammatory diseases.


Subject(s)
Chalcone/analogs & derivatives , Inflammation/prevention & control , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/physiology , Angelica/chemistry , Animals , Cell Line , Chalcone/pharmacology , Cyclooxygenase 2/genetics , Cyclooxygenase 2 Inhibitors/pharmacology , Gene Expression/drug effects , Mice , NF-kappa B/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/genetics , Transcription Factor AP-1/antagonists & inhibitors , Tumor Necrosis Factor-alpha/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...