Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Antibiot (Tokyo) ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918599

ABSTRACT

Waldiomycin is an inhibitor of histidine kinases (HKs). Although most HK inhibitors target the ATP-binding region, waldiomycin binds to the intracellular dimerization domain (DHp domain) with its naphthoquinone moiety presumed to interact with the conserved H-box region. To further develop inhibitors targeting the H-box, various 2-aminonaphthoquinones with cyclic, aliphatic, or aromatic amino groups and naphtho [2,3-d] isoxazole-4,9-diones were synthesized. These compounds were tested for their inhibitory activity (IC50) against WalK, an essential HK for Bacillus subtilis growth, and their minimum inhibitory concentrations (MIC) against B. subtilis. As a result, 11 novel HK inhibitors were obtained as naphthoquinone derivatives (IC50: 12.6-305 µM, MIC: 0.5-128 µg ml-1). The effect of representative compounds on the expression of WalK/WalR regulated genes in B. subtilis was investigated. Four naphthoquinone derivatives induced the expression of iseA (formerly yoeB), whose expression is negatively regulated by the WalK/WalR system. This suggests that these compounds inhibit WalK in B. subtilis cells, resulting in antibacterial activity. Affinity selection/mass spectrometry analysis was performed to identify whether these naphthoquinone derivatives interact with WalK in a manner similar to waldiomycin. Three compounds were found to competitively inhibit the binding of waldiomycin to WalK, suggesting that they bind to the H-box region conserved in HKs and inhibit HK activity.

2.
Biochemistry ; 61(7): 545-553, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35274528

ABSTRACT

Ca2+/calmodulin-dependent protein kinase kinase (CaMKK), a Ca2+/CaM-dependent enzyme that phosphorylates and activates multifunctional kinases, including CaMKI, CaMKIV, protein kinase B/Akt, and 5'AMP-activated protein kinase, is involved in various Ca2+-signaling pathways in cells. Recently, we developed an ATP-competitive CaMKK inhibitor, TIM-063 (2-hydroxy-3-nitro-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one, Ohtsuka et al. Biochemistry 2020, 59, 1701-1710). To gain mechanistic insights into the interaction of CaMKK with TIM-063, we prepared TIM-063-coupled sepharose (TIM-127-sepharose) for association/dissociation analysis of the enzyme/inhibitor complex. CaMKKα/ß in transfected COS-7 cells and in mouse brain extracts specifically bound to TIM-127-sepharose and dissociated following the addition of TIM-063 in a manner similar to that of recombinant GST-CaMKKα/ß, which could bind to TIM-127-sepharose in a Ca2+/CaM-dependent fashion and dissociate from the sepharose following the addition of TIM-063 in a dose-dependent manner. In contrast to GST-CaMKKα, GST-CaMKKß was able to weakly bind to TIM-127-sepharose in the presence of EGTA, probably due to the partially active conformation of recombinant GST-CaMKKß without Ca2+/CaM-binding. These results suggested that the regulatory domain of CaMKKα prevented the inhibitor from interacting with the catalytic domain as the GST-CaMKKα mutant (residues 126-434) lacking the regulatory domain (residues 438-463) interacted with TIM-127-sepharose regardless of the presence or absence of Ca2+/CaM. Furthermore, CaMKKα bound to TIM-127-sepharose in the presence of Ca2+/CaM completely dissociated from TIM-127-sepharose following the addition of excess EGTA. These results indicated that TIM-063 interacted with and inhibited CaMKK in its active state but not in its autoinhibited state and that this interaction is likely reversible, depending on the concentration of intracellular Ca2+.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Kinase , Calcium-Calmodulin-Dependent Protein Kinases , Animals , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Mice , Phosphorylation , Protein Binding , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...