Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Lett ; 597(23): 2946-2962, 2023 12.
Article in English | MEDLINE | ID: mdl-37698360

ABSTRACT

Chlorogenic acid esterases (ChlEs) are a useful class of enzymes that hydrolyze chlorogenic acid (CGA) into caffeic and quinic acids. ChlEs can break down CGA in foods to improve their sensory properties and release caffeic acid in the digestive system to improve the absorption of bioactive compounds. This work presents the structure, molecular dynamics, and biochemical characterization of a ChlE from Lactobacillus helveticus (Lh). Molecular dynamics simulations suggest that substrate access to the active site of LhChlE is modulated by two hairpin loops above the active site. Docking simulations and mutational analysis suggest that two residues within the loops, Gln145 and Lys164 , are important for CGA binding. Lys164 provides a slight substrate preference for CGA, whereas Gln145 is required for efficient turnover. This work is the first to examine the dynamics of a bacterial ChlE and provides insights on substrate binding preference and turnover in this type of enzyme.


Subject(s)
Lactobacillus helveticus , Lactobacillus helveticus/genetics , Lactobacillus helveticus/metabolism , Chlorogenic Acid/metabolism , Carboxylic Ester Hydrolases/chemistry , Bacteria/metabolism
2.
Food Res Int ; 162(Pt A): 111996, 2022 12.
Article in English | MEDLINE | ID: mdl-36461298

ABSTRACT

Chlorogenic acid (CGA) is an ester between caffeic and quinic acid. It is found in many foods and reacts with free amino groups in proteins at alkaline pH, leading to the formation of an undesirable green pigment in sunflower seed-derived ingredients. This paper presents the biochemical characterization and application of a highly active chlorogenic acid esterase from Lactobacillus helveticus. The enzyme is one of the most active CGA esterases known to date with a Km of 0.090 mM and a kcat of 82.1 s-1. The CGA esterase is easily expressed recombinantly in E. coli in large yields and is stable over a wide range of pH and temperatures. We characterized CGA esterase's kinetic properties in sunflower meal and demonstrated that the enzyme completely hydrolyzes CGA in the meal. Finally, we showed that CGA esterase treatment of sunflower seed meal enables the production of pale brown sunflower protein isolates using alkaline extraction. This work will allow for more widespread use of sunflower-derived products in applications where neutrally-colored food products are desired.


Subject(s)
Asteraceae , Helianthus , Lactobacillus helveticus , Chlorogenic Acid , Escherichia coli , Meals
SELECTION OF CITATIONS
SEARCH DETAIL
...