Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protist ; 175(2): 126023, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368650

ABSTRACT

The nivicolous species of the genus Diderma are challenging to identify, and there are several competing views on their delimitation. We analyzed 102 accessions of nivicolous Diderma spp. that were sequenced for two or three unlinked genes to determine which of the current taxonomic treatments is better supported by molecular species delimitation methods. The results of a haplotype web analysis, Bayesian species delimitation under a multispecies coalescent model, and phylogenetic analyses on concatenated alignments support a splitting approach that distinguishes six taxa: Diderma alpinum, D. europaeum, D. kamchaticum, D. meyerae, D. microcarpum and D. niveum. The first two approaches also support the separation of Diderma alpinum into two species with allopatric distribution. An extended dataset of 800 specimens (mainly from Europe) that were barcoded with 18S rDNA revealed only barcode variants similar to those in the species characterized by the first data set, and showed an uneven distribution of these species in the Northern Hemisphere: Diderma microcarpum and D. alpinum were the only species found in all seven intensively sampled mountain regions. Partial 18S rDNA sequences serving as DNA barcodes provided clear signatures that allowed for unambiguous identification of the nivicolous Diderma spp., including two putative species in D. alpinum.


Subject(s)
Myxomycetes , DNA Barcoding, Taxonomic/methods , Bayes Theorem , Phylogeny , DNA, Ribosomal/genetics
2.
Mycologia ; 105(6): 1535-46, 2013.
Article in English | MEDLINE | ID: mdl-23921236

ABSTRACT

A new widespread myxomycete species, Physarum pseudonotabile, inhabiting the arid regions of the Eurasia, South and North America is described and illustrated. Tentatively assigned to Ph. notabile T. Macbr., a phylogeny based on the small ribosomal subunit (SSU) and elongation factor 1 alpha (EF1a) genes placed the new species in a clade far from Ph. notabile. Ph. pseudonotabile was found to be frequent in surveys based on the moist chamber culture technique with samples of litter, bark and herbivore dung collected in dry steppe and deserts of the Caspian lowland (Russia), Kazakhstan, Mongolia, China, Spain, Argentina and USA. The main morphological difference between Ph. pseudonotabile and Ph. notabile lies in spore ornamentation. Spores of the former species display irregularly distributed verrucae, whereas the latter species possesses spores with dense and regularly arranged spinulae. In addition, the ecological preferences of the two species differ. Ph. pseudonotabile inhabits the bark of living plants and ground litter in arid regions, whereas Ph. notabile is found on coarse woody debris in boreal and temperate forests. Although the new species appears to be closest to Ph. notabile morphologically, the phylogenetic analysis reveals Ph. pusillum and Ph. nivale as the closest relatives. In addition, the molecular investigations revealed a considerable amount of hidden diversity within species of Physarum with gray lime flakes. Currently we have only sufficient material to assess the morphological variation of Ph. pseudonotabile but expect that more taxa within this clade may emerge within studies combining morphological and molecular analyses.


Subject(s)
Phylogeny , Physarum/classification , Physarum/isolation & purification , Desert Climate , Molecular Sequence Data , Peptide Elongation Factor 1/genetics , Physarum/genetics , Physarum/growth & development , Protozoan Proteins/genetics , Russia , Spores, Protozoan/classification , Spores, Protozoan/genetics , Spores, Protozoan/growth & development , Spores, Protozoan/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...