Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(42): e2210204119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215468

ABSTRACT

V-ATPases are rotary motor proteins that convert the chemical energy of ATP into the electrochemical potential of ions across cell membranes. V-ATPases consist of two rotary motors, Vo and V1, and Enterococcus hirae V-ATPase (EhVoV1) actively transports Na+ in Vo (EhVo) by using torque generated by ATP hydrolysis in V1 (EhV1). Here, we observed ATP-driven stepping rotation of detergent-solubilized EhVoV1 wild-type, aE634A, and BR350K mutants under various Na+ and ATP concentrations ([Na+] and [ATP], respectively) by using a 40-nm gold nanoparticle as a low-load probe. When [Na+] was low and [ATP] was high, under the condition that only Na+ binding to EhVo is rate limiting, wild-type and aE634A exhibited 10 pausing positions reflecting 10-fold symmetry of the EhVo rotor and almost no backward steps. Duration time before the forward steps was inversely proportional to [Na+], confirming that Na+ binding triggers the steps. When both [ATP] and [Na+] were low, under the condition that both Na+ and ATP bindings are rate limiting, aE634A exhibited 13 pausing positions reflecting 10- and 3-fold symmetries of EhVo and EhV1, respectively. The distribution of duration time before the forward step was fitted well by the sum of two exponential decay functions with distinct time constants. Furthermore, occasional backward steps smaller than 36° were observed. Small backward steps were also observed during three long ATP cleavage pauses of BR350K. These results indicate that EhVo and EhV1 do not share pausing positions, Na+ and ATP bindings occur at different angles, and the coupling between EhVo and EhV1 has a rigid component.


Subject(s)
Metal Nanoparticles , Vacuolar Proton-Translocating ATPases , Adenosine Triphosphate/metabolism , Detergents , Gold/metabolism , Models, Molecular , Proton-Translocating ATPases/metabolism , Rotation , Vacuolar Proton-Translocating ATPases/metabolism
2.
Phys Chem Chem Phys ; 20(5): 3844, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29359771

ABSTRACT

Correction for 'Rate constants, processivity, and productive binding ratio of chitinase A revealed by single-molecule analysis' by Akihiko Nakamura et al., Phys. Chem. Chem. Phys., 2018, DOI: .

3.
Phys Chem Chem Phys ; 20(5): 3010-3018, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29090301

ABSTRACT

Serratia marcescens chitinase A is a linear molecular motor that hydrolyses crystalline chitin in a processive manner. Here, we quantitatively determined the rate constants of elementary reaction steps, including binding (kon), translational movement (ktr), and dissociation (koff) with single-molecule fluorescence imaging. The kon for a single chitin microfibril was 2.1 × 109 M-1 µm-1 s-1. The koff showed two components, k (3.2 s-1, 78%) and k (0.38 s-1, 22%), corresponding to bindings to different crystal surfaces. From the kon, k, k and ratio of fast and slow dissociations, dissociation constants for low and high affinity sites were estimated as 2.0 × 10-9 M µm and 8.1 × 10-10 M µm, respectively. The ktr was 52.5 nm s-1, and processivity was estimated as 60.4. The apparent inconsistency between high turnover (52.5 s-1) calculated from ktr and biochemically determined low kcat (2.6 s-1) is explained by a low ratio (4.8%) of productive enzymes on the chitin surface (52.5 s-1 × 0.048 = 2.5 s-1). Our results highlight the importance of single-molecule analysis in understanding the mechanism of enzymes acting on a solid-liquid interface.


Subject(s)
Bacterial Proteins/metabolism , Chitinases/metabolism , Serratia marcescens/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Catalytic Domain , Chitin/chemistry , Chitin/metabolism , Chitinases/chemistry , Chitinases/genetics , Cryoelectron Microscopy , Hydrolysis , Kinetics , Protein Binding , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
4.
J Biol Chem ; 291(43): 22404-22413, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27609516

ABSTRACT

Trichoderma reesei Cel6A (TrCel6A) is a cellobiohydrolase that hydrolyzes crystalline cellulose into cellobiose. Here we directly observed the reaction cycle (binding, surface movement, and dissociation) of single-molecule intact TrCel6A, isolated catalytic domain (CD), cellulose-binding module (CBM), and CBM and linker (CBM-linker) on crystalline cellulose Iα The CBM-linker showed a binding rate constant almost half that of intact TrCel6A, whereas those of the CD and CBM were only one-tenth of intact TrCel6A. These results indicate that the glycosylated linker region largely contributes to initial binding on crystalline cellulose. After binding, all samples showed slow and fast dissociations, likely caused by the two different bound states due to the heterogeneity of cellulose surface. The CBM showed much higher specificity to the high affinity site than to the low affinity site, whereas the CD did not, suggesting that the CBM leads the CD to the hydrophobic surface of crystalline cellulose. On the cellulose surface, intact molecules showed slow processive movements (8.8 ± 5.5 nm/s) and fast diffusional movements (30-40 nm/s), whereas the CBM-Linker, CD, and a catalytically inactive full-length mutant showed only fast diffusional movements. These results suggest that both direct binding and surface diffusion contribute to searching of the hydrolysable point of cellulose chains. The duration time constant for the processive movement was 7.7 s, and processivity was estimated as 68 ± 42. Our results reveal the role of each domain in the elementary steps of the reaction cycle and provide the first direct evidence of the processive movement of TrCel6A on crystalline cellulose.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase/chemistry , Cellulose/chemistry , Fungal Proteins/chemistry , Trichoderma/enzymology , Cellulose 1,4-beta-Cellobiosidase/genetics , Fungal Proteins/genetics , Protein Domains , Trichoderma/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...