Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 59(2): 1256-1264, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31904961

ABSTRACT

Cs4O6 adopts two distinct crystal structures at ambient pressure. At temperatures below ∼200 K, its ground state structure is tetragonal, incorporating two symmetry-distinct dioxygen anions, diamagnetic peroxide, O22-, and paramagnetic superoxide, O2-, units in a 1:2 ratio, consistent with the presence of charge and orbital order. At high temperatures, its ground state structure is cubic, comprising symmetry-equivalent dioxygen units with an average oxidation state of -4/3, consistent with the adoption of a charge-disordered state. The pressure dependence of the structure of solid Cs4O6 at 300 K and at 13.4 K was followed up to ∼12 GPa by synchrotron X-ray powder diffraction. When a pressure of ∼2 GPa is reached at ambient temperature, an incomplete phase transition that is accompanied by a significant volume reduction (∼2%) to a more densely packed highly anisotropic tetragonal structure, isostructural with the low-temperature ambient-pressure phase of Cs4O6, is encountered. A complete transformation of the cubic (charge-disordered) to the tetragonal (charge-ordered) phase of Cs4O6 is achieved when the hydrostatic pressure exceeds 6 GPa. In contrast, the pressure response of the Cs4O6 cubic/tetragonal phase assemblage at 13.4 K is distinctly different with the cubic and tetragonal phases coexisting over the entire pressure range (to ∼12 GPa) accessed in the present experiments and with only a small fraction of the cubic phase converting to tetragonal. Pressure turns out to be an inefficient stimulus to drive the charge disorder-order transition in Cs4O6 at cryogenic temperatures, presumably due to the high activation barriers (much larger than the thermal energy at 13.4 K) associated with the severe steric hindrance for a rotation of the molecular oxygen units necessitated in the course of the structural transformation.

2.
Inorg Chem ; 58(21): 14532-14541, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31633914

ABSTRACT

Cs4O6 is a mixed-valence molecular oxide with a cubic structure, comprising valency-delocalized O24/3- units and with properties highly sensitive to cooling protocols. Here we use neutron powder diffraction to authenticate that, while upon deep quenching the cubic phase is kinetically arrested down to cryogenic temperatures, ultraslow cooling results in an incomplete structural transition to a contracted tetragonal phase. Two dioxygen anions in a 1:2 ratio are identified, providing evidence that the transition is accompanied by charge and orbital order and stabilizes a Robin-Day Class II mixed-valence state, comprising O22- and O2- anions. The phenomenology of the phase change is consistent with that of a martensitic transition. The response of the low-temperature phase assemblage to heating is complex, involving a series of successive interconversions between the coexisting phases. Notably, a broad interconversion plateau is present near 260 K, signifying reentrant kinetic arrest of the tetragonal phase upon heating because of the combined effects of increased steric hindrance for molecular rotation and melting of charge and orbital order. The geometrically frustrated pyrochlore lattice adopted by the paramagnetic S = 1/2 O2- units provides an intimate link between the crystal and magnetic properties of charge-ordered Cs4O6, naturally accounting for the absence of magnetic order.

SELECTION OF CITATIONS
SEARCH DETAIL
...