Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1339: 86-95, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24666940

ABSTRACT

A high-density, polymeric C18 stationary phase (Inertsil ODS-P) or a polymeric C30 phase (Inertsil C30) provided improved resolution of the isomeric fatty acids (FAs), FA methyl esters (FAMEs), triacylglycerols (TAGs), and tocopherols with an increase in pressure of 20-70MPa in reversed-phase HPLC. With respect to isomeric C18 FAMEs with one cis-double bond, ODS-P phase was effective for recognizing the position of a double bond among petroselinic (methyl 6Z-octadecenoate), oleic (methyl 9Z-octadecenoate), and cis-vaccenic (methyl 11Z-octadecenoate), especially at high pressure, but the differentiation between oleic and cis-vaccenic was not achieved by C30 phase regardless of the pressure. A monomeric C18 phase (InertSustain C18) was not effective for recognizing the position of the double bond in monounsaturated FAME, while the separation of cis- and trans-isomers was achieved by any of the stationary phases. The ODS-P and C30 phases provided increased separation for TAGs and ß- and γ-tocopherols at high pressure. The transfer of FA, FAME, or TAG molecules from the mobile phase to the ODS-P stationary phase was accompanied by large volume reduction (-30∼-90mL/mol) resulting in a large increase in retention (up to 100% for an increase of 50MPa) and improved isomer separation at high pressure. For some isomer pairs, the ODS-P and C30 provided the opposite elution order, and in each case higher pressure improved the separation. The two stationary phases showed selectivity for the isomers having rigid structures, but only the ODS-P was effective for differentiating the position of a double bond in monounsaturated FAMEs. The results indicate that the improved isomer separation was provided by the increased dispersion interactions between the solute and the binding site of the stationary phase at high pressure.


Subject(s)
Fatty Acids/chemistry , Tocopherols/chemistry , Triglycerides/chemistry , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/instrumentation , Chromatography, Reverse-Phase/methods , Esters , Estradiol/chemistry , Hydrophobic and Hydrophilic Interactions , Isomerism , Pressure , Temperature
2.
J Sep Sci ; 33(3): 348-58, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20169553

ABSTRACT

The effectiveness of several basic compounds for testing silica-based stationary phases was reviewed by applying them to recent columns for reversed-phase HPLC. Most octadecylsilylated (C18) stationary phases, prepared as a base-deactivated material from high-purity silica gel with endcapping, provided excellent peak shape and column efficiency for the bases including benzylamine and amitriptyline that once caused problems and were subsequently employed for testing silanol activities. However, a cyclic tertiary amine, dextrometorphan, was eluted as an acceptable peak from only a few columns at neutral pH. Such a more sensitive probe is expected to contribute to further improvement of the stationary phase for reversed-phase HPLC.


Subject(s)
Amines/chemistry , Amines/isolation & purification , Chromatography, Reverse-Phase/methods , Silanes/chemistry , Silicon Dioxide/chemistry , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/instrumentation , Ions/chemistry , Ions/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...