Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 9(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646933

ABSTRACT

Inherited retinal dystrophies (IRDs) are progressive diseases leading to vision loss. Mutation in the eyes shut homolog (EYS) gene is one of the most frequent causes of IRD. However, the mechanism of photoreceptor cell degeneration by mutant EYS has not been fully elucidated. Here, we generated retinal organoids from induced pluripotent stem cells (iPSCs) derived from patients with EYS-associated retinal dystrophy (EYS-RD). In photoreceptor cells of RD organoids, both EYS and G protein-coupled receptor kinase 7 (GRK7), one of the proteins handling phototoxicity, were not in the outer segment, where they are physiologically present. Furthermore, photoreceptor cells in RD organoids were vulnerable to light stimuli, and especially to blue light. Mislocalization of GRK7, which was also observed in eys-knockout zebrafish, was reversed by delivering control EYS into photoreceptor cells of RD organoids. These findings suggest that avoiding phototoxicity would be a potential therapeutic approach for EYS-RD.


Subject(s)
Induced Pluripotent Stem Cells , Organoids , Retinal Dystrophies , Zebrafish , Animals , Humans , Eye Proteins/genetics , Eye Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Light/adverse effects , Mutation , Organoids/metabolism , Retina/metabolism , Retina/pathology , Retinal Dystrophies/therapy , Retinal Dystrophies/genetics , Retinal Dystrophies/metabolism
2.
Luminescence ; 33(1): 249-255, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28929569

ABSTRACT

It is known that endoplasmic reticulum (ER) stress in cells and extracellular vesicles (EVs) plays a significant role in cancer cells, therefore the evaluation of compounds that can regulate ER stress and EV secretion would be a suitable system for further screening and development of new drugs. In this study, we evaluated chemical chaperones derived from natural products based on monitoring Bip/GRP78 promoter activity during cancer cell growth, at the level of the single cell, by a bioluminescence microscopy system that had several advantages compared with fluorescence imaging. It was found that several chemical chaperones, such as ferulic acid (FA), silybin, and rutin, affected the activity. We visualized EVs from cancer cells using bioluminescence imaging and showed that several EVs could be observed when using CD63 fused with NanoLuc luciferase, which has a much smaller molecular weight and higher intensity than conventional firefly luciferase. We then examined the effects of the chemical chaperones on EVs from cancer cells by bioluminescence imaging and quantified the expression of CD63 in these EVs. It was found that the chemical chaperones examined in this study affected CD63 levels in EVs. These results showed that imaging at the level of the single cell using bioluminescence is a powerful tool and could be used to evaluate chemical chaperones and EVs from cancer cells. This approach may produce new information in this field when taken together with conventional and classical methods.


Subject(s)
Biological Products/chemistry , Extracellular Vesicles/chemistry , Glioma/metabolism , Heat-Shock Proteins/chemistry , Luminescent Measurements , Tetraspanin 30/analysis , Cell Line, Tumor , Endoplasmic Reticulum Chaperone BiP , Extracellular Vesicles/metabolism , Glioma/pathology , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Promoter Regions, Genetic/genetics , Tetraspanin 30/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...