Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 18(10): 6188-6194, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30223652

ABSTRACT

We found that optical Aharonov-Bohm oscillations in a single GaAs/GaAlAs quantum ring can be controlled by excitation intensity. With a weak excitation intensity of 1.2 kW cm-2, the optical Aharonov-Bohm oscillation period of biexcitons was observed to be half that of excitons in accordance with the period expected for a two-exciton Wigner molecule. When the excitation intensity is increased by an order of magnitude (12 kW cm-2), a gradual deviation of the Wigner molecule condition occurs with decreased oscillation periods and diamagnetic coefficients for both excitons and biexcitons along with a spectral shift. These results suggest that the effective orbit radii and rim widths of electrons and holes in a single quantum ring can be modified by light intensity via photoexcited carriers, which are possibly trapped at interface defects resulting in a local electric field.

2.
Nano Lett ; 16(1): 27-33, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26648477

ABSTRACT

The Aharonov-Bohm effect in ring structures in the presence of electronic correlation and disorder is an open issue. We report novel oscillations of a strongly correlated exciton pair, similar to a Wigner molecule, in a single nanoquantum ring, where the emission energy changes abruptly at the transition magnetic field with a fractional oscillation period compared to that of the exciton, a so-called fractional optical Aharonov-Bohm oscillation. We have also observed modulated optical Aharonov-Bohm oscillations of an electron-hole pair and an anticrossing of the photoluminescence spectrum at the transition magnetic field, which are associated with disorder effects such as localization, built-in electric field, and impurities.

3.
Nanoscale Res Lett ; 6(1): 351, 2011 Apr 20.
Article in English | MEDLINE | ID: mdl-21711894

ABSTRACT

We theoretically investigate optical Aharonov-Bohm (AB) effects on trion and biexciton in the type-II semiconductor quantum dots, in which holes are localized near the center of the dot, and electrons are confined in a ring structure formed around the dot. Many-particle states are calculated numerically by the exact diagonalization method. Two electrons in trion and biexciton are strongly correlated to each other, forming a Wigner molecule. Since the relative motion of electrons are frozen, the Wigner molecule behaves as a composite particle whose mass and charges are twice those of an electron. As a result, the period of AB oscillation for trion and biexciton becomes h/2e as a function of magnetic flux penetrating the ring. We find that the magnetoluminescence spectra from trion and biexciton change discontinuously as the magnetic flux increases by h/2e.PACS: 71.35.Ji, 73.21.-b, 73.21.La, 78.67.Hc.

SELECTION OF CITATIONS
SEARCH DETAIL
...